The social rank of an animal is distinguished by its behavior relative to others in its community. Although social-status-dependent differences in behavior must arise because of differences in neural function, status-dependent differences in the underlying neural circuitry have only begun to be described. We report that dominant and subordinate crayfish differ in their behavioral orienting response to an unexpected unilateral touch, and that these differences correlate with functional differences in local neural circuits that mediate the responses. The behavioral differences correlate with simultaneously recorded differences in leg depressor muscle EMGs and with differences in the responses of depressor motor neurons recorded in reduced, in vitro preparations from the same animals. The responses of local serotonergic interneurons to unilateral stimuli displayed the same status-dependent differences as the depressor motor neurons. These results indicate that the circuits and their intrinsic serotonergic modulatory components are configured differently according to social status, and that these differences do not depend on a continuous descending signal from higher centers.
Many macruran decapod crustaceans show sexual dimorphism of abdominal appendages adapted for use as secondary reproductive organs. Not only does the Australian crayfish, Cherax destructor, show no external, abdominal dimorphism, but both males and females have lost the pleopods of the first abdominal segment entirely. The first nerves of the abdominal ganglia of crayfish and lobsters carry the axons of the pleopod motor neurons. We used intracellular cobalt infusion into the first nerves of the first and second abdominal ganglia to reveal the motor neuron complement of these ganglia in males and females. The first nerves of the second abdominal ganglia of both males and females have approximately 37 motor neurons associated with them. The homologous nerves in the first abdominal segment, where there are no pleopods, have only 8 or 9 motor neurons associated with them. The evolutionary implications of this difference are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.