Mitochondria, according to the free radical theory of aging, are the major source of reactive oxygen species (ROS). The results, presented in this paper, question the role of reactive oxygen species in contributing significantly to the extent of mitochondrial bioenergy degradation of the tissues, which can be correlated with mtDNA rearrangements. We report here that mtDNA rearrangements, including deletions and duplications, in tissues from human aged subjects, occur in levels ranging from very low in liver, to considerable in cardiac muscle, to almost total in skeletal muscle. The extent of mtDNA rearrangements is correlated at both the individual tissue and cell level with cytochrome oxidase (COX) activity as the exemplifier of cellular bioenergy capacity. Thus, the ROS proposal in its simplest form as it affects mtDNA and mitochondrial electron transport system is not supported by the available data.
A number of mitochondrial DNA (mtDNA) deletions have been recently identified in the tissues of patients with mitochondrial diseases and in elderly individuals. To investigate the distribution of mutant mitochondrial genomes within any particular tissue, we have developed a sensitive method based on indirect in situ PCR. Our experiments have shown that the new method had the advantage of selectively amplifying only mtDNA bearing the 4,977 bp deletion. We show that this method is more sensitive than in situ hybridization for detecting the 4977 bp mtDNA deletion while using only a low number of PCR cycles that minimize damage to tissue architecture. By using this method, we have demonstrated that the mutation does not occur uniformly among the cells of a given tissue/organ. This technique will be useful studying the distribution/localization of mtDNA mutations in individual cells of tissues and when combined with enzyme histochemical procedures in adjacent sections will enable the correlation between mtDNA mutations and bioenergy defects in single cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.