A surge of luteinizing hormone (LH) from the pituitary gland triggers ovulation, oocyte maturation, and luteinization for successful reproduction in mammals. Because the signaling molecules RAS and ERK1/2 (extracellular signal-regulated kinases 1 and 2) are activated by an LH surge in granulosa cells of preovulatory follicles, we disrupted Erk1/2 in mouse granulosa cells and provide in vivo evidence that these kinases are necessary for LH-induced oocyte resumption of meiosis, ovulation, and luteinization. In addition, biochemical analyses and selected disruption of the Cebpb gene in granulosa cells demonstrate that C/EBPβ (CCAAT/Enhancerbinding protein-β) is a critical downstream mediator of ERK1/2 activation. Thus, ERK1/2 and C/ EBPβ constitute an in vivo LH-regulated signaling pathway that controls ovulation-and luteinization-related events.In the mammalian ovary, the female germ cells (oocytes) reside within the ovarian follicles and are surrounded by somatic cell-derived granulosa cells (GCs) and cumulus cells that have endocrine functions and control oocyte maturation. Female reproductive success depends on the growth of ovarian follicles and differentiation of GCs as well as oocyte maturation and ovulation (1,2). Although LH plays a critical role in the initiation of ovulation and in the terminal differentiation of GCs to luteal cells that compose the corpora lutea (CLs) and produce progesterone, the precise molecular targets in these processes remain ill-defined. Cyclic adenosine 3´,5´-monophosphate (cAMP) is a well-known mediator of LH action, but LH also induces expression of the epidermal growth factor
Ovulation is a precisely timed process by which a mature oocyte is released from an ovarian follicle. This process is initiated by the pituitary surge of luteinizing hormone (LH), is temporally associated with transcriptional regulation of numerous genes, and is presumed to involve the synthesis and͞or activation of specific proteases that degrade the follicle wall. The progesterone receptor (PR), a nuclear receptor transcription factor, is induced in granulosa cells of preovulatory follicles in response to the LH surge and has been shown to be essential for ovulation, because mice lacking PR fail to ovulate and are infertile. Using these mice as a model in which to elucidate PR-regulated genes in the ovulation process, we show that the matrix metalloproteinases MMP-2 and MMP-9 are not targets of PR during ovulation. In contrast, two other proteases, ADAMTS-1 (A disintegrin and metalloproteinase with thrombospondin-like motifs) and cathepsin L (a lysosomal cysteine protease), are transcriptional targets of PR action. ADAMTS-1 is induced after LH stimulation in granulosa cells of preovulatory follicles and depends on PR. Cathepsin L is induced in granulosa cells of growing follicles by follicle-stimulating hormone, but the highest levels of cathepsin L mRNA occur in preovulatory follicles in response to LH in a PR-dependent manner. The identification of two regulated proteases in the ovary, together with their abnormal expression in anovulatory PR knockout mice, suggests that each plays a critical role in follicular rupture and represents a major advance in our understanding of the proteolytic events that control ovulation.
The molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor (EGF)-like factors amphiregulin (Areg), epiregulin (Ereg), and betacellulin (Btc) are induced in cumulus oocyte complexes (COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins (PGs) and progesterone receptor (PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 (Ptgs2) null mice and Pgr null (PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK (SB203580), MAPK kinase (MEK) 1 (PD98059), and PTGS2 (NS398) but not protein kinase A (PKA) (KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 (AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12-myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis (StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein-coupled receptor and growth factor receptor pathways in ovulating follicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.