The Mediterranean monk seal (Monachus monachus) is classified by the IUCN as “endangered,” with a global population estimated to number fewer than 800 individuals. Our understanding of the biology and health status of the species is still limited, rendering every medical case a challenge for conservationists and veterinary clinicians. Although studying and managing disease in wild marine hosts is complex and challenging, studying and mitigating the effects of any disease to the Mediterranean monk seal is of utmost importance for conservation. The aim of this study was to document for the first time the presence of the hookworm Uncinaria hamiltoni in rehabilitated Mediterranean monk seal pups in Greece. A detailed examination protocol was followed for all pups that live-stranded over 30 years in 22 different locations, including physical, parasitological, and other examinations. Hookworms (adults and/or eggs) were detected in all the fecal samples, from all animals. Molecular identification using MtDNA (COI) and ribosomal DNA (D2/D3 28S and internal transcribed spacer [ITS] regions) identified the nematode species as Uncinaria hamiltoni. The clinical impacts and the benefits of anthelmintic treatment as a tool for the conservation management of the species are discussed.
The Mediterranean monk seal (Monachus monachus) is classified as an endangered species by the IUCN, with a global population that does not exceed 800 individuals. There is limited understanding around the biology and health status of the species, rendering possible parasitic infections grave for its conservation efforts. The aim of the current study was the molecular identification of a parasitic nematode found in the digestive system of a sub-adult Mediterranean monk seal individual, that was found stranded in the area of Pagasitikos Gulf, Greece in 2019. Analysis of the stomach contents revealed the presence of two intact female nematode individuals. Standard protocols were followed as DNA extraction of the parasites was conducted and PCR amplification of the cytochrome oxidase subunit I (COI) mitochondrial gene was implemented. Sequencing analysis of a 585 bp-amplified product displayed a 96% similarity of the screened nematodes to the Pseudoterranova bulbosa species. Bayesian inference was implemented for the subsequent tree reconstruction. The phylogenetic tree revealed a clear genetic similarity between our parasitic nematode individuals named as Pseudoterranova spp. and Pseudoterranova bulbosa (bootstrap value: 82%), which is indicated for the first and only time as such, to be found in the waters of the Mediterranean Sea and also in the stomach of a Mediterranean monk seal.
The authentication of food products and the verification of their identity are of major importance for consumers. Food fraud through mislabeling is an illegal practice consisting of the substitution of an expensive food product by a relatively cheaper one, misleading false labelling of their origin and adulteration in processed or frozen products. This issue is particularly of high importance concerning fish and seafood, which are easily adulterated primarily due to difficult morphological identification. Fish species of the Mullidae family are considered among the most high-valued seafood products traded in Greece and Eastern Mediterranean in general, in terms of the price and demand. Specifically, the red mullet (Mullus barbatus) and the striped red mullet (Mullus surmuletus) are both indigenous in the Aegean (FAO Division 37.3.1) and the Ionian (FAO Division 37.2.2) Seas, with high levels of consumers’ preferences. However, they could be easily adulterated or misidentified by the invasive Aegean Sea Lessepsian migrator goldband goatfish (Upeneus moluccensis) as well as by the imported West African goatfish (Pseudupeneus prayensis). Keeping this in mind, we designed two novel, time-saving and easy-to-apply multiplex PCR assays and one multiple Melt–Curve analysis real-time PCR for the identification of these four species. These methodologies are based on species-specific primers targeting single nucleotide polymorphisms (SNPs) detected via sequencing analysis of the mitochondrial cytochrome C oxidase subunit I (CO1) and of the cytochrome b (CYTB) genes in newly collected individuals, with additional comparison with congeneric and conspecific haplotypes obtained from the GenBank database. Both methodologies, targeting CO1 or CYTB, utilize one common and four diagnostic primers, producing amplicons of different length that are easily and reliably separated on agarose gel electrophoresis, yielding a single clear band of diagnostic size for each species or a certain Melt–Curve profile. The applicability of this cost-effective and fast methodology was tested in 328 collected specimens, including 10 cooked samples obtained from restaurants. In the vast majority (327 out of the 328) of the specimens tested, one single band was produced, in agreement with the expected products with a single exception a M. barbatus sample that was identified as M. surmuletus, the identity of which was confirmed using sequencing, indicating erroneous morphological identification. The developed methodologies are expected to contribute to the detection of commercial fraud in fish authentication.
Living specimens of the macroalga Palmaria decipiens were collected from 100 m depth, representing a new confirmed depth record, considerably exceeding the previous record of 42 m depth. Previous deeper collections (below conventional SCUBA depths) have relied on dredge/grab samples or drop camera surveys. Remote techniques cannot conclusively prove that macroalgae are living at these depths, as algae detach from shallower substrata, e.g., through ice scouring, and drift to depths below their growth limit. This, combined with a low rate of decay of macroalgae around Antarctica, requires validation that algal samples from depth have grown in situ. Estimates of macroalgal biomass, energy fluxes, and the potential energy fixation may need adjusting to consider the deeper growing depths particularly with glacial retreat along the Antarctic Peninsula revealing areas of rocky substrata for macroalgal colonisation. The confirmed extension of depth where macroalgae can grow will have implications for assessments of benthic productivity and food webs in Antarctica.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.