We have recently seen many successful applications of recurrent neural networks (RNNs) on electronic medical records (EMRs), which contain histories of patients' diagnoses, medications, and other various events, in order to predict the current and future states of patients. Despite the strong performance of RNNs, it is often challenging for users to understand why the model makes a particular prediction. Such black-box nature of RNNs can impede its wide adoption in clinical practice. Furthermore, we have no established methods to interactively leverage users' domain expertise and prior knowledge as inputs for steering the model. Therefore, our design study aims to provide a visual analytics solution to increase interpretability and interactivity of RNNs via a joint effort of medical experts, artificial intelligence scientists, and visual analytics researchers. Following the iterative design process between the experts, we design, implement, and evaluate a visual analytics tool called RetainVis, which couples a newly improved, interpretable, and interactive RNN-based model called RetainEX and visualizations for users' exploration of EMR data in the context of prediction tasks. Our study shows the effective use of RetainVis for gaining insights into how individual medical codes contribute to making risk predictions, using EMRs of patients with heart failure and cataract symptoms. Our study also demonstrates how we made substantial changes to the state-of-the-art RNN model called RETAIN in order to make use of temporal information and increase interactivity. This study will provide a useful guideline for researchers that aim to design an interpretable and interactive visual analytics tool for RNNs.
We propose a learning framework to find the representation of a robot's kinematic structure and motion embedding spaces using graph neural networks (GNN). Finding a compact and low-dimensional embedding space for complex phenomena is a key for understanding its behaviors, which may lead to a better learning performance, as we observed in other domains of images or languages. However, although numerous robotics applications deal with various types of data, the embedding of the generated data has been relatively less studied by roboticists. To this end, our work aims to learn embeddings for two types of robotic data: the robot's design structure, such as links, joints, and their relationships, and the motion data, such as kinematic joint positions. Our method exploits the tree structure of the robot to train appropriate embeddings to the given robot data. To avoid overfitting, we formulate multi-task learning to find a general representation of the embedding spaces. We evaluate the proposed learning method on a robot with a simple linear structure and visualize the learned embeddings using t-SNE. We also study a few design choices of the learning framework, such as network architectures and message passing schemes.
Recent advances in deep reinforcement learning (deep RL) enable researchers to solve challenging control problems, from simulated environments to real-world robotic tasks. However, deep RL algorithms are known to be sensitive to the problem formulation, including observation spaces, action spaces, and reward functions. There exist numerous choices for observation spaces but they are often designed solely based on prior knowledge due to the lack of established principles. In this work, we conduct benchmark experiments to verify common design choices for observation spaces, such as Cartesian transformation, binary contact flags, a short history, or global positions. Then we propose a search algorithm to find the optimal observation spaces, which examines various candidate observation spaces and removes unnecessary observation channels with a Dropout-Permutation test. We demonstrate that our algorithm significantly improves learning speed compared to manually designed observation spaces. We also analyze the proposed algorithm by evaluating different hyperparameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.