Background Behavioral representations obtained from mobile sensing data can be helpful for the prediction of an oncoming psychotic relapse in patients with schizophrenia and the delivery of timely interventions to mitigate such relapse. Objective In this study, we aim to develop clustering models to obtain behavioral representations from continuous multimodal mobile sensing data for relapse prediction tasks. The identified clusters can represent different routine behavioral trends related to daily living of patients and atypical behavioral trends associated with impending relapse. Methods We used the mobile sensing data obtained from the CrossCheck project for our analysis. Continuous data from six different mobile sensing-based modalities (ambient light, sound, conversation, acceleration, etc) obtained from 63 patients with schizophrenia, each monitored for up to a year, were used for the clustering models and relapse prediction evaluation. Two clustering models, Gaussian mixture model (GMM) and partition around medoids (PAM), were used to obtain behavioral representations from the mobile sensing data. These models have different notions of similarity between behaviors as represented by the mobile sensing data, and thus, provide different behavioral characterizations. The features obtained from the clustering models were used to train and evaluate a personalized relapse prediction model using balanced random forest. The personalization was performed by identifying optimal features for a given patient based on a personalization subset consisting of other patients of similar age. Results The clusters identified using the GMM and PAM models were found to represent different behavioral patterns (such as clusters representing sedentary days, active days but with low communication, etc). Although GMM-based models better characterized routine behaviors by discovering dense clusters with low cluster spread, some other identified clusters had a larger cluster spread, likely indicating heterogeneous behavioral characterizations. On the other hand, PAM model-based clusters had lower variability of cluster spread, indicating more homogeneous behavioral characterization in the obtained clusters. Significant changes near the relapse periods were observed in the obtained behavioral representation features from the clustering models. The clustering model-based features, together with other features characterizing the mobile sensing data, resulted in an F2 score of 0.23 for the relapse prediction task in a leave-one-patient-out evaluation setting. The obtained F2 score was significantly higher than that of a random classification baseline with an average F2 score of 0.042. Conclusions Mobile sensing can capture behavioral trends using different sensing modalities. Clustering of the daily mobile sensing data may help discover routine and atypical behavioral trends. In this study, we used GMM-based and PAM-based cluster models to obtain behavioral trends in patients with schizophrenia. The features derived from the cluster models were found to be predictive for detecting an oncoming psychotic relapse. Such relapse prediction models can be helpful in enabling timely interventions.
Objective: Arterial stiffness is a known indicator for cardiovascular disease. However, the factors that lead to arterial stiffening have primarily been studied in participants from high-income countries. Here, we examine clinical and lifestyle metrics in relation to arterial stiffness in Tanzanian adults. Methods:We performed pulse wave velocity (PWV), the gold standard measure of arterial stiffness, on 808 Tanzanian adults (ages 18-65) enrolled in a longitudinal cohort studying trends in blood pressure.Results: As expected, PWV was strongly associated with age, blood pressure and sex.We controlled for these factors in our statistical analysis. Lifestyle metrics were compared across multiple PWV quantiles. We found that determinants of PWV varied by sex: in female participants, PWV was associated with common obesity metrics and menopause, while in male participants, PWV was associated with HIV status and duration of anti-retroviral therapy (ART). Further clinical and lifestyle factors such as marriage status and type of occupation were also significantly associated with PWV and moderated by sex. Conclusion:Together, our data demonstrate the importance of studying sex-specific causal pathways for arterial stiffness and of including under-represented populations in these studies.
BACKGROUND Behavioral representations obtained from mobile sensing data could be helpful for the prediction of an oncoming psychotic relapse in schizophrenia patients and delivery of timely interventions to mitigate such relapse. OBJECTIVE In this work, we aim to develop clustering models to obtain behavioral representations from continuous multimodal mobile sensing data towards relapse prediction tasks. The identified clusters could represent different routine behavioral trends related to daily living of patients as well as atypical behavioral trends associated with impending relapse. METHODS We used the mobile sensing data obtained in the CrossCheck project for our analysis. Continuous data from six different mobile sensing-based modalities (e.g. ambient light, sound/conversation, acceleration etc.) obtained from a total of 63 schizophrenia patients, each monitored for up to a year, were used for the clustering models and relapse prediction evaluation. Two clustering models, Gaussian Mixture Model (GMM) and Partition Around Medoids (PAM), were used to obtain behavioral representations from the mobile sensing data. These models have different notions of similarity between behaviors as represented by the mobile sensing data and thus provide differing behavioral characterizations. The features obtained from the clustering models were used to train and evaluate a personalized relapse prediction model using Balanced Random Forest. The personalization was done by identifying optimal features for a given patient based on a personalization subset consisting of other patients who are of similar age. RESULTS The clusters identified using the GMM and PAM models were found to represent different behavioral patterns (such as clusters representing sedentary days, active but with low communications days, etc.). While GMM based models better characterized routine behaviors by discovering dense clusters with low cluster spread, some other identified clusters had a larger cluster spread likely indicating heterogeneous behavioral characterizations. PAM model based clusters on the other hand had lower variability of cluster spread, indicating more homogeneous behavioral characterization in the obtained clusters. Significant changes near the relapse periods were seen in the obtained behavioral representation features from the clustering models. The clustering model based features, together with other features characterizing the mobile sensing data, resulted in an F2 score of 0.24 for the relapse prediction task in a leave-one-patient-out evaluation setting. This obtained F2 score is significantly higher than a random classification baseline with an average F2 score of 0.042. CONCLUSIONS Mobile sensing can capture behavioral trends using different sensing modalities. Clustering of the daily mobile sensing data may help discover routine as well as atypical behavioral trends. In this work, we used GMM and PAM-based cluster models to obtain behavioral trends in schizophrenia patients. The features derived from the cluster models were found to be predictive for detecting an oncoming psychotic relapse. Such relapse prediction models can be helpful to enable timely interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.