Abstract. In this paper we describe a regular expression pattern matching approach for reconfigurable hardware. Following a Non-deterministic Finite Automata direction, we introduce three new basic building blocks to support constraint repetitions syntaxes more efficiently than previous works. In addition, a number of optimization techniques are employed to reduce the area cost of the designs and maximize performance. Our design methodology is supported by a tool that automatically generates the circuitry for the given regular expressions and outputs Hardware Description Language representations ready for logic synthesis. The proposed approach is evaluated on network Intrusion Detection Systems (IDS). Recent IDS use regular expressions to represent hazardous packet payload contents. They require high-speed packet processing providing a challenging case study for pattern matching using regular expressions. We use a number of IDS rulesets to show that our approach scales well as the number of regular expressions increases, and present a step-by-step optimization to survey the benefits of our techniques. The synthesis tool described in this study is used to generate hardware engines to match 300 to 1,500 IDS regular expressions using only 10-45 K logic cells and achieving throughput of 1.6-2.2 and 2.4-3.2 Gbps on Virtex2 and Virtex4 devices, respectively. Concerning the throughput per area required per matching non-Meta character, our hardware engines are 10-20Â more efficient than previous Field Programmable Gate Array approaches. Furthermore, the generated designs have comparable area requirements to current application-specific integrated circuit solutions.
The ANTAREX 1 project aims at expressing the application selfadaptivity through a Domain Specific Language (DSL) and to runtime manage and autotune applications for green and heterogeneous High Performance Computing (HPC) systems up to Exascale. The DSL approach allows the definition of energy-efficiency, performance, and adaptivity strategies as well as their enforcement at runtime through application autotuning and resource and power management. We show through a mini-app extracted from one of the project application use cases some initial exploration of application precision tuning by means enabled by the DSL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.