In a model-based software product line (MSPL), the variability of the domain is characterized in a variability model and the core artifacts are base models conforming to a modeling language (also called metamodel). A realization model connects the features of the variability model to the base model elements, triggering operations over these elements based on a configuration. The design space of an MSPL is extremely complex to manage for the engineer, since the number of variants may be exponential and the derived product models have to be conforming to numerous well-formedness and business rules. In this paper, the objective is to provide a way to generate MSPLs, called counterexamples (also called antipatterns), that can produce invalid product models despite a valid configuration in the variability model. We describe the foundations and motivate the usefulness of counterexamples (e.g., inference of guidelines or domain-specific rules to avoid earlier the specification of incorrect mappings; testing oracles for increasing the This work was developed in the VaryMDE project, a bilateral collaboration between the Diverse team at INRIA and the Thales Research and Technology. A preliminary version of this paper was published in the International Software Product Line Conference. robustness of derivation engines given a modeling language). We provide a generic process, based on the common variability language (CVL) to randomly search the space of MSPLs for a specific modeling language. We develop LineGen a tool on top of CVL and modeling technologies to support the methodology and the process. LineGen targets different scenarios and is flexible to work either with just a domain metamodel as input or also with pre-defined variability models and base models. We validate the effectiveness of this process for three formalisms at different scales (up to 247 metaclasses and 684 rules). We also apply the approach in the context of a real industrial scenario involving a large-scale metamodel.
In systems engineering, the deployment of software components is error-prone since numerous safety and security rules have to be preserved. Furthermore, many deployments on different heterogeneous platforms are possible. In this paper we present a technological solution to assist industrial practitioners in producing a safe and secure solution out of numerous architectural variants. First, we introduce a pattern technology that provides correct-by-construction deployment models through the reuse of modeling artifacts organized in a catalog. Second, we develop a variability solution, connected to the pattern technology and based on an extension of the common variability language, for supporting the synthesis of model-based architectural variants. This paper describes a live demonstration of an industrial effort seeking to bridge the gap between variability modeling and model-based systems engineering practices. We illustrate the tooling support with an industrial case study (a secure radio platform).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.