BackgroundAtherosclerosis starts by lipid accumulation in the arterial intima and progresses into a chronic vascular inflammatory disease. A major atherogenic process is the formation of lipid-loaded macrophages in which a breakdown of the endolysomal pathway results in irreversible accumulation of cargo in the late endocytic compartments with a phenotype similar to several forms of lipidosis. Macrophages exposed to oxidized LDL exihibit this phenomenon in vitro and manifest an impaired degradation of internalized lipids and enhanced inflammatory stimulation. Identification of the specific chemical component(s) causing this phenotype has been elusive because of the chemical complexity of oxidized LDL.Methodology/Principal FindingsLipid “core aldehydes" are formed in oxidized LDL and exist in atherosclerotic plaques. These aldehydes are slowly oxidized in situ and (much faster) by intracellular aldehyde oxidizing systems to cholesteryl hemiesters. We show that a single cholesteryl hemiester incorporated into native, non-oxidized LDL induces a lipidosis phenotype with subsequent cell death in macrophages. Internalization of the cholesteryl hemiester via the native LDL vehicle induced lipid accumulation in a time- and concentration-dependent manner in “frozen" endolysosomes. Quantitative shotgun lipidomics analysis showed that internalized lipid in cholesteryl hemiester-intoxicated cells remained largely unprocessed in those lipid-rich organelles.Conclusions/SignificanceThe principle elucidated with the present cholesteryl hemiester-containing native-LDL model, extended to other molecular components of oxidized LDL, will help in defining the molecular etiology and etiological hierarchy of atherogenic agents.
Increased sugar intake is implicated in Type-2 diabetes and fatty liver disease; however, the mechanisms through which glucose and fructose promote these conditions are unclear. We hypothesize that alterations in intestinal metabolite and microbiota profiles specific to each monosaccharide are involved. Two groups of six adult C57BL/6 mice were fed for 10-weeks with diets with glucose (G) or fructose (F) as sole carbohydrates, and a third group was fed with a normal chow carbohydrate mixture (N). Fecal metabolites were profiled by nuclear magnetic resonance (NMR) and microbial composition by real-time polymerase chain reaction (qPCR). Although N, G and F mice exhibited similar weight gains (with slight slower gains for F) and glucose tolerance, multivariate analysis of NMR data indicated that F mice were separated from N and G, with decreased butyrate and glutamate and increased fructose, succinate, taurine, tyrosine, and xylose. The different sugar diets also resulted in distinct intestinal microbiota profiles. That associated with fructose seemed to hold more potential to induce host metabolic disturbances compared to glucose, mainly by promoting bile acid deconjugation and taurine release and compromising intestinal barrier integrity. This may reflect the noted nonquantitative intestinal fructose absorption hence increasing its availability for microbial metabolism, a subject for further investigation.
H NMR analysis of hepatic glycogen H enrichment from H O provides realistic profiles of dietary glucose and fructose contributions to hepatic glycogen synthesis in mice fed with diets containing 1 or the other sugar as the sole carbohydrate source.
Functional foods are designed to have physiological benefits and/or reduce the risk of chronic disease beyond basic nutritional functions. This review will discuss the scientific literature on the effects and mechanisms by which functional food components influence metabolic control. Given the high and increasing incidence of glucose intolerance and Type 2 diabetes related to over-nutrition in Westernized societies and the potentially significant role of diet and food awareness in preventing or reversing this condition, this review will focus on those food components or supplements that specifically improve glycemic control. The molecular mechanisms that have been proposed to explain the effects of food components on metabolic control will be discussed and progress in translating this knowledge towards improving human health will be reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.