Biological collective systems have been an important source of inspiration for the design of production systems, due to their intrinsic characteristics. In this sense, several high level engineering design principles have been distilled and proposed on a wide number of reference system architectures for production systems. However, the application of bio-inspired concepts is often lost due to design and implementation choices or are simply used as heuristic approaches that solve specific hard optimization problems. This paper proposes a bio-inspired reference architecture for production systems, focused on highly dynamic environments, denominated BIO-inspired Self-Organising Architecture for Manufacturing (BIOSOARM). BIOSOARM aims to strictly adhere to bio-inspired principles. For this purpose, both shopfloor components and product parts are individualized and extended into the virtual environment as fully decoupled autonomous entities, where they interact and cooperate towards the emergence of a self-organising behaviour that leads to the emergence of the necessary production flows. BIOSOARM therefore introduces a fundamentally novel approach to production that decouples the system’s operation from eventual changes, uncertainty or even critical failures, while simultaneously ensures the performance levels and simplifies the deployment and reconfiguration procedures. BIOSOARM was tested into both flow-line and “job shop”-like scenarios to prove its applicability, robustness and performance, both under normal and highly dynamic conditions
Sustainability is currently one of the biggest challenges and drivers of manufacturing industry. With traditional automation approaches becoming evermore inadequate to support sustainable mass customized production, the research focus is moving towards agile systems that enact companies with the ability to quickly reconfigure their shop-floors by seamlessly deploying or removing modules. Such systems are envisioned as key for attaining a profitable and sustainable industrial development. In this sense, this paper attempts to characterize an innovative approach that relies on bio-inspired concepts as the main control mechanism, in order to foster sustainability by attaining the necessary shop-floor agility. Furthermore an experimental setup is presented and the results are analysed, in order to understand the influence and impact of the main properties of the approach towards the system performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.