The application of power electronics equipment in medium voltage (MV) distribution grids can provide new management solutions for power flow control, load balancing and voltage problems. A series MV VSC-based power flow controller has recently been presented to interconnect two radial distribution feeders performing active and reactive power transfers to improve the flexibility and utilization of these circuits in a controlled and secure way. Although not previously explored, this power flow controller can integrate the functionality of a series power filter, accomplishing independent control of the fundamental power flow while isolating the harmonic content between the two interconnected feeders. This prevents harmonic pollution from one feeder from propagating to the other, improving the voltage quality. To implement the harmonic isolation, several control strategies can be used. Therefore, this paper provides a comparative analysis between two of the main harmonic control techniques found in the literature: the Synchronous Reference Frame (SRF) controller and the Proportional Resonant (PR) controller. Assessments are conducted both through simulations and experimental results in a meshed network at 13.8 kV with different types of non-linear loads. In the simulation cases, both algorithms showed similar results; however, in the experimental cases, the PR-based solution exhibited better performance in isolating the harmonics from one feeder to the other.
This paper presents a novel strategy for online parameter estimation in a hybrid active power filter (HAPF). This HAPF makes use of existing capacitor banks which it combines with an active power filter (APF) in order to dynamically compensate reactive power. The equipment is controlled with finite control set model predictive control (FCS-MPC) due to its already well-known fast dynamic response. The HAPF model is similar to a grid-connected LCL-filtered converter, so the direct control of the HAPF current can cause resonances and instabilities. To solve this, indirect control, using the capacitor voltage and the inverter-side current, is applied in the cost function, which creates high dependency between the system parameters and the equipment capability to compensate the load reactive power. This dependency is evaluated by simulations, in which the capacitor bank reactance is shown to be the most sensitive parameter, and, thus, responsible for inaccuracies in the FCS-MPC references. In order to minimize this problem without increasing the complexity of the FCS-MPC algorithm, an estimation technique, based on adaptive notch filters, is proposed. The proposed algorithm is tested in a laboratory prototype to demonstrate its ability to follow variations in the HAPF capacitor reactance, effectively correcting the reactive power reference and providing dynamic reactive power compensation. During the tests, the proposed algorithm was capable of keeping the supplied reactive power within a 1% error, even in a situation with 33% variation in the HAPF capacitor reactance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.