Pumps running as turbines are pointed out as a cost-effective solution for energy recovery in pressurised water supply systems. However, these hydraulic machines feature low efficiency under variable discharge operation due to the lack of an inlet flow control component. Variable speed operation is an approach for controlling the discharge at the pump as turbine inlet aiming at increasing the operational efficiency. This research work presents the experimental investigation for measuring the variable speed characteristic curves of pumps running as turbines, focusing on the turbine and on the extended operation modes. Three single-stage end-suction closed-impeller centrifugal pumps with different unit specific speed values are tested. Turbine mode test results show that the discharge-specific energy operating range is broadened with increasing efficiency if the machines are operated with variable speed. Extended operation results show that these hydraulic machines do not feature the instability region near the runaway conditions, the so-called the "s-curve". Outcomes of this experimental investigation provide the required insights for establishing the design technical specifications of micro hydropower plants with variable speed pumps running as turbines, aiming at maximizing the energy recovered in pressurised water supply systems.
A realistic representation of the evolution of the dry convective boundary layer in mesoscale and large-scale atmospheric models has been an elusive goal for many years. In this paper the performance of a new mixing-length formulation for the dry convective boundary layer is evaluated in the context of the Coupled Ocean– Atmosphere Mesoscale Prediction System (COAMPS). In this new formulation, the mixing length is proportional to a time scale and to the square root of the turbulent kinetic energy. The model results are tested against observations from the Climate Impact of Changes in Land Use (CICLUS) field experiment in the south of Portugal. It is shown that COAMPS with the new formulation produces a more realistic simulation of the boundary layer growth. A data assimilation experiment performed with COAMPS shows that the improvements provided by the new formulation are significant, particularly in terms of the humidity vertical distribution. Finally, one-dimensional simulations are used to confirm that the new formulation provides more accurate results because of a more realistic representation of the entrainment and of the vertical mixing in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.