Predicting new links in physical, biological, social, or technological networks has a significant scientific and societal impact. Path-based link prediction methods utilize the explicit counting of even-and odd-length paths between nodes to quantify a score function and infer new or unobserved links. Here, we propose a quantum algorithm for path-based link prediction using a controlled continuous-time quantum walk to encode even and odd path-based prediction scores. Through classical simulations on a few real networks, we confirm that the quantum walk scoring function performs similarly to other path-based link predictors. In a brief complexity analysis we identify the potential of our approach in uncovering a quantum speedup for path-based link prediction.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.