The locality of bulk physics at distances below the AdS length scale is one of the remarkable aspects of AdS/CFT duality, and one of the least tested. It requires that the AdS radius be large compared to the Planck length and the string length. In the CFT this implies a large-N expansion and a gap in the spectum of anomalous dimensions. We conjecture that the implication also runs in the other direction, so that any CFT with a large-N expansion and a large gap has a local bulk dual. For an abstract CFT we formulate the consistency conditions, most notably crossing symmetry, and show that the conjecture is true in a broad range of CFT's, to first nontrivial order in 1/N 2 : in any CFT with a gap and a large-N expansion, the four-point correlator is generated via the AdS/CFT dictionary from a local bulk interaction. We establish this result by a counting argument on each side, and also investigate various properties of some explicit solutions. 5 We thank M. Douglas and S. Giddings for discussions of this possibility. 6 We thank S. Dubovsky and D. Gross for this observation. 7 We thank E. Silverstein for raising this point.
We explore the Mellin representation of conformal correlation functions recently proposed by Mack. Examples in the AdS/CFT context reinforce the analogy between Mellin amplitudes and scattering amplitudes. We conjecture a simple formula relating the bulk scattering amplitudes to the asymptotic behavior of Mellin amplitudes and show that previous results on the flat space limit of AdS follow from our new formula. We find that the Mellin amplitudes are particularly useful in the case of conformal gauge theories in the planar limit. In this case, the four point Mellin amplitudes are meromorphic functions whose poles and their residues are entirely determined by two and three point functions of single-trace operators. This makes the Mellin amplitudes the ideal objects to attempt the conformal bootstrap program in higher dimensions.
We develop the embedding formalism for conformal field theories, aimed at doing computations with symmetric traceless operators of arbitrary spin. We use an indexfree notation where tensors are encoded by polynomials in auxiliary polarization vectors. The efficiency of the formalism is demonstrated by computing the tensor structures allowed in n-point conformal correlation functions of tensors operators. Constraints due to tensor conservation also take a simple form in this formalism. Finally, we obtain a perfect match between the number of independent tensor structures of conformal correlators in d dimensions and the number of independent structures in scattering amplitudes of spinning particles in (d + 1)-dimensional Minkowski space.
We generalize Regge theory to correlation functions in conformal field theories. This is done by exploring the analogy between Mellin amplitudes in AdS/CFT and S-matrix elements. In the process, we develop the conformal partial wave expansion in Mellin space, elucidating the analytic structure of the partial amplitudes. We apply the new formalism to the case of four point correlation functions between protected scalar operators in N=4 Super Yang Mills, in cases where the Regge limit is controlled by the leading twist operators associated to the pomeron-graviton Regge trajectory. At weak coupling, we are able to predict to arbitrary high order in the 't Hooft coupling the behaviour near J=1 of the OPE coefficients C_{OOJ} between the external scalars and the spin J leading twist operators. At strong coupling, we use recent results for the anomalous dimension of the leading twist operators to improve current knowledge of the AdS graviton Regge trajectory - in particular, determining the next and next to next leading order corrections to the intercept. Finally, by taking the flat space limit and considering the Virasoro-Shapiro S-matrix element, we compute the strong coupling limit of the OPE coefficient C_{LLJ} between two Lagrangians and the leading twist operators of spin J.Comment: 27 + 24 pages, 7 figures; v2 Typos corrected, references added; v3 Typo corrected; v4 Typos corrected, references adde
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.