Passatempo virus was isolated during a zoonotic outbreak. Biologic features and molecular characterization of hemagglutinin, thymidine kinase, and vaccinia growth factor genes suggested a vaccinia virus infection, which strengthens the idea of the reemergence and circulation of vaccinia virus in Brazil. Molecular polymorphisms indicated that Passatempo virus is a different isolate.
This study confirms the high clinical frequency of human VACV infection, even among vaccinated individuals. The infection was related to detection of IgG- or IgM-specific antibodies that correlates in most of the cases with positive PRNT. The DNAemia suggests viremia during VACV natural infections. Our data indicate that patients vaccinated against smallpox may no longer be protected.
Outbreaks of bovine vaccinia disease caused by circulation of Vaccinia virus (VACV) strains have been a common occurrence in Brazil in the recent years, being an important emergent zoonosis. During a single outbreak that took place in 2001, two genetically different VACV strains were isolated and named Guarani P1 virus (GP1V) and Guarani P2 virus (GP2V). Molecular diagnosis was done through restriction fragment length polymorphism (RFLP) of ati gene (A26L) and by sequence analysis of a group of five VACV genes including the C11R, J2R, A56R, B18R, and E3L genes. These findings confirmed the co-circulation of two different Vaccinia virus strains during the same outbreak, raising important questions about the origin, emergence, and circulation of VACV strains in Brazil.
Dengue virus type 3 genotype I was detected in Brazil during epidemics in 2002–2004. To confirm this finding, we identified this virus genotype in naturally infected field-caught Aedes aegypti mosquitoes and eggs. Results showed usefulness of virus investigations in vectors as a component of active epidemiologic surveillance.
Aims: To evaluate the antiviral activity of Bignoniaceae species occurring in the state of Minas Gerais, Brazil.
Methods and Results: Ethanol extracts of different anatomical parts of bignoniaceous plant species have been evaluated in vitro against human herpesvirus type 1 (HSV‐1), vaccinia virus (VACV) and murine encephalomyocarditis virus (EMCV) by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay. A total of 34 extracts from 18 plant species selected according to ethnopharmacological and taxonomic criteria were screened. Fifteen of the 34 extracts (44·1%) have disclosed antiviral activity against one or more of the viruses assayed with EC50 values in the range of 23·2 ± 2·5–422·7 ± 10·9 μg ml−1.
Conclusions: Twelve of the 34 extracts (35·3%) might be considered promising sources of antiviral natural products, as they have shown EC50 ≤ 100 μg ml−1. The present screening discloses the high potential of the Bignoniaceae family as source of antiviral agents.
Significance and Impact of the Study: Active extracts were identified and deserve bioguided studies for the isolation of antiviral compounds and studies on mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.