We introduce an agent-based model describing a susceptible-infectious-susceptible (SIS) system of humans and mosquitoes to predict malaria epidemiological scenarios in realistic biological conditions. Emphasis is given to the transition from endemic behavior to eradication of malaria transmission induced by combined drug therapies acting on both the gametocytemia reduction and on the selective mosquito mortality during parasite development in the mosquito. Our mathematical framework enables to uncover the critical values of the parameters characterizing the effect of each drug therapy. Moreover, our results provide quantitative evidence of what is empirically known: interventions combining gametocytemia reduction through the use of gametocidal drugs, with the selective action of ivermectin during parasite development in the mosquito, may actively promote disease eradication in the long run. In the agent model, the main properties of human-mosquito interactions are implemented as parameters and the model is validated by comparing simulations with real data of malaria incidence collected in the endemic malaria region of Chimoio in Mozambique. Finally, we discuss our findings in light of current drug administration strategies for malaria prevention, that may interfere with human-to-mosquito transmission process.
Using an agent-based model of malaria, we present numerical evidence that in communities of individuals having an affinity varying within a broad range of values, disease transmission may increase up to 300%. Moreover, our findings provide new insight into how to combine different strategies for the prevention of malaria transmission. In particular, we uncover a relationship between the level of heterogeneity and the level of conventional and unconventional anti-malarial drug administration (ivermectin and gametocidal agents), which, when taken together, will define a control parameter, tuning between disease persistence and elimination. Finally, we also provide evidence that the entomological inoculation rate, as well as the product between parasite and sporozoite rates are both good indicators of malaria incidence in the presence of heterogeneity in disease transmission and may configure a possible improvement in that setting, upon classical standard measures such as the basic reproductive number.
We analyze the empirical series of malaria incidence, using the concepts of autocorrelation, Hurst exponent and Shannon entropy with the aim of uncovering hidden variables in those series. From the simulations of an agent model for malaria spreading, we first derive models of the malaria incidence, the Hurst exponent and the entropy as functions of gametocytemia, measuring the infectious power of a mosquito to a human host. Second, upon estimating the values of three observables—incidence, Hurst exponent and entropy—from the data set of different malaria empirical series we predict a value of the gametocytemia for each observable. Finally, we show that the independent predictions show considerable consistency with only a few exceptions which are discussed in further detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.