Atherosclerosis, the underlying cause of cardiovascular disease (CVD), is a worldwide cause of morbidity and mortality. Reducing ApoB-containing lipoproteins—chiefly, LDL (low-density lipoprotein)—has been the main strategy for reducing CVD risk. Although supported by large randomized clinical trials, the persistence of residual cardiovascular risk after effective LDL reduction has sparked an intense search for other novel CVD biomarkers and therapeutic targets. Recently, Lox-1 (lectin-type oxidized LDL receptor 1), an innate immune scavenger receptor, has emerged as a promising target for early diagnosis and CV risk prediction and is also being considered as a treatment target. Lox-1 was first described as a 50 kDa transmembrane protein in endothelial cells responsible for oxLDL (oxidized LDL) recognition, triggering downstream pathways that intensify atherosclerosis via endothelial dysfunction, oxLDL uptake, and apoptosis. Lox-1 is also expressed in platelets, where it enhances platelet activation, adhesion to endothelial cells, and ADP-mediated aggregation, thereby favoring thrombus formation. Lox-1 was also identified in cardiomyocytes, where it was implicated in the development of cardiac fibrosis and myocyte apoptosis, the main determinants of cardiac recovery following an ischemic insult. Together, these findings have revealed that Lox-1 is implicated in all the main steps of atherosclerosis and has encouraged the development of immunoassays for measurement of sLox-1 (serum levels of soluble Lox-1) to be used as a potential CVD biomarker. Finally, the recent development of synthetic Lox-1 inhibitors and neutralizing antibodies with promising results in animal models has made Lox-1 a target for drug development. In this review, we discuss the main findings regarding the role of Lox-1 in the development, diagnosis, and therapeutic strategies for CVD prevention and treatment.
Background The glucose-lowering independent effect of sodium glucose cotransporter-2 inhibitors (SGLT2i) on arterial wall function has not yet been clarified. This study aims to assess whether SGLT2i treatment can attenuate endothelial dysfunction related to type 2 diabetes mellitus (T2D) compared with glucose-lowering equivalent therapy. Methods In a prospective, open-label, single-center, randomized clinical trial, 98 patients with T2DM and carotid intima-media thickness above the 75th percentile were randomized 1:1 to 12 weeks of therapy with dapagliflozin or glibenclamide in addition to metformin in glucose-lowering equivalent regimens. The coprimary endpoints were 1-min flow-mediated dilation (FMD) at rest and 1-min FMD after 15 min of ischemia followed by 15 min of reperfusion time (I/R). Results Ninety-seven patients (61% males, 57 ± 7 years) completed the study. The median HbA1c decreased by − 0.8 (0.7)% and -0.7 (0.95)% following dapagliflozin and glibenclamide, respectively. The first coprimary endpoint, i.e., rest FMD changed by + 3.3(8.2)% and − 1.2(7.5)% for the dapagliflozin and glibenclamide arms, respectively (p = 0.0001). Differences between study arms in the second coprimary endpoint were not significant. Plasma nitrite 1 min after rest FMD was higher for dapagliflozin [308(220) nmol/L] than for glibenclamide (258[110] nmol/L; p = 0.028). The resistive indices at 1 min [0.90 (0.11) vs. 0.93 (0.07); p = 0.03] and 5 min [0.93 (0.07) vs. 0.95 (0.05); p = 0.02] were higher for the glibenclamide group than for the dapagliflozin group. Plasma biomarkers for inflammation and oxidative stress did not differ between the treatments. Conclusions Dapagliflozin improved micro- and macrovascular endothelial function compared to glibenclamide, regardless of glycemic control in patients with T2DM and subclinical carotid atherosclerotic disease.
Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine skin cancer with steadily increasing incidence and poor prognosis. Despite recent success with immunotherapy, 50% of patients still succumb to their diseases. To date, there is no Food and Drug Administration-approved targeted therapy for advanced MCC. Aberrant activation of phosphatidylinositide-3-kinase (PI3K)/AKT/mTOR pathway is frequently detected in MCC, making it an attractive therapeutic target. We previously found PI3K pathway activation in human MCC cell lines and tumors and demonstrated complete clinical response in a Stage IV MCC patient treated with PI3K inhibitor idelalisib. Here, we found that both PI3K-α and -δ isoforms are abundantly expressed in our MCC cell lines and clinical samples; we therefore examined antitumor efficacy across a panel of five PI3K inhibitors with distinctive isoform-specificities, including idelalisib (PI3K-δ), copanlisib (PI3K-α/δ), duvelisib (PI3K-γ/δ), alpelisib (PI3K-α), and AZD8186 (PI3K-β/δ). Of these, copanlisib exerts the most potent antitumor effects, markedly inhibiting cell proliferation, survival, and tumor growth by suppressing PI3K/mTOR/Akt activities in mouse models generated from MCC cell xenografts and patient-derived tumor xenografts. These results provide compelling preclinical evidence for application of copanlisib in advanced MCC with aberrant PI3K activation for which immunotherapy is insufficient, or patients who are unsuitable for immunotherapy.
The role of adjuvant transarterial chemoembolization (TACE) for patients with resectable hepatocellular carcinoma (HCC) undergoing hepatectomy is currently unclear. We performed a systematic review of the literature using the MEDLINE, Embase, and Cochrane Library databases. Random-effects meta-analysis was carried out to compare the overall survival (OS) and recurrence-free survival (RFS) of patients with resectable HCC undergoing hepatectomy followed by adjuvant TACE vs. hepatectomy alone in randomized controlled trials (RCTs). The risk of bias was assessed using the Risk of Bias 2.0 tool. Meta-regression analyses were performed to explore the effect of hepatitis B viral status, microvascular invasion, type of resection (anatomic vs. parenchymal-sparing), and tumor size on the outcomes. Ten eligible RCTs, reporting on 1216 patients in total, were identified. The combination of hepatectomy and adjuvant TACE was associated with superior OS (hazard ratio (HR): 0.66, 95% confidence interval (CI): 0.52 to 0.85; p < 0.001) and RFS (HR: 0.70, 95% CI: 0.56 to 0.88; p < 0.001) compared to hepatectomy alone. There were significant concerns regarding the risk of bias in most of the included studies. Overall, adjuvant TACE may be associated with an oncologic benefit in select HCC patients. However, the applicability of these findings may be limited to Eastern Asian populations, due to the geographically restricted sample. High-quality multinational RCTs, as well as predictive tools to optimize patient selection, are necessary before adjuvant TACE can be routinely implemented into standard practice. PROSPERO Registration ID: CRD42021245758.
Despite decades of therapeutic advances, myocardial infarction remains a leading cause of death worldwide. Recent studies have identified HDLs (high-density lipoproteins) as a potential candidate for mitigating coronary ischemia/reperfusion injury via a broad spectrum of signaling pathways. HDL ligands, such as S1P (sphingosine-1-phosphate), Apo (apolipoprotein) A-I, clusterin, and miRNA, may influence the opening of the mitochondrial channel, insulin sensitivity, and production of vascular autacoids, such as NO, prostacyclin, and endothelin-1. In parallel, antioxidant activity and sequestration of oxidized molecules provided by HDL can attenuate the oxidative stress that triggers ischemia/reperfusion. Nevertheless, during myocardial infarction, oxidation and the capture of oxidized and proinflammatory molecules generate large phenotypic and functional changes in HDL, potentially limiting its beneficial properties. In this review, new findings from cellular and animal models, as well as from clinical studies, will be discussed to describe the cardioprotective benefits of HDL on myocardial infarction. Furthermore, mechanisms by which HDL modulates cardiac function and potential strategies to mitigate postmyocardial infarction risk damage by HDL will be detailed throughout the review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.