Epidemiologically, high-density lipoprotein (HDL) cholesterol levels have been inversely associated to cardiovascular (CV) events, although a Mendelian Randomisation Study had failed to establish a clear causal role. Numerous atheroprotective mechanisms have been attributed to HDL, the main being the ability to promote cholesterol efflux from arterial walls; anti-inflammatory effects related to HDL ligands such as S1P (sphingosine-1-phosphate), resolvins and others have been recently identified. Experimental studies and early clinical investigations have indicated the potential of HDL to slow progression or induce regression of atherosclerosis. More recently, the availability of different HDL formulations, with different phospholipid moieties, has allowed to test other indications for HDL therapy. Positive reports have come from studies on coronary stent biocompatibility, where the use of HDL from different sources reduced arterial cell proliferation and thrombogenicity. The observation that low HDL-C levels may be associated with an enhanced risk of heart failure (HF) has also suggested that HDL therapy may be applied to this condition. HDL infusions or apoA-I gene transfer were able to reverse heart abnormalities, reduce diastolic resistance and improve cardiac metabolism. HDL therapy may be effective not only in atherosclerosis, but also in other conditions, of relevant impact on human health. KEY MESSAGES High-density lipoproteins have as a major activity that of removing excess cholesterol from tissues (particularly arteries). Knowledge on the activity of high-density lipoproteins on health have however significantly widened. HDL-therapy may help to improve stent biocompatibility and to reduce peripheral arterial resistance in heart failure.