The use of hydrogen as an alternative to fossil fuels for vehicle propulsion is already a reality. However, due to its physical characteristics, storage is still a challenge. There is an innovative way, presented in this study, to store hydrogen in conventional vehicles propelled by spark-ignition reciprocating engines and fuel cells, using hydrogen as fuel; the storage of hydrogen will be at high pressure within small spheres randomly packed in a tank, like the conventional tank of fuel used nowadays in current vehicles. Therefore, the main purpose of the present study is to assess the performance of this storage system and compare it to others already applied by car manufacturers in their cars. In order to evaluate the performance of this storage system, some parameters were taken into account: The energy stored by volume and stored by weight, hydrogen leakage, and compliance with current standards. This system is safer than conventional storage systems since hydrogen is stored inside small spheres containing small amounts of hydrogen. Besides, its gravimetric energy density (GED) is threefold and the volumetric energy density (VED) is about half when compared with homologous values for conventional systems, and both exceed the targets set by the U.S. Department of Energy. Regarding the leakage of hydrogen, it complies with the European Standards, provided a suitable choice of materials and dimensions is made.
Water is an important resource for human beings, yet there are inhabited places tormented by the scarcity of it. The present study is concerned with places where, seemingly, the best way to get water is through solar distillers. These places should have, typically, high values of solar irradiation and a lack of human and economic resources to build and operate complex equipment. A set of sites scattered around the world was chosen, and then the presumed productivity and thermal efficiency that solar distillers would have if they were installed at these places was calculated. The mathematical model used with this purpose assumes steady state operation; the values of mass of water distilled and distiller efficiency were calculated for every hour, but the results presented are annual averages. Then, an economic study was made based on local costs of construction materials for the distillers, the work force, and the prices of water to predict the payback time of solar distillers. Finally, a study on environmental impact, particularly in terms of greenhouse gas (GHG) emissions, was made to compare reverse osmosis (RO) with solar distillation. For the sites studied, typical values of annual water output are in the range of 414 dm3/m2, for Évora, up to 696 dm3/m2, for Faya Largeau; the minimum efficiency was found for Évora, as 11.5%, and the maximum efficiency was found for Tessalit, as 15.2%. Payback times are very high, regardless of the areas of the globe where solar distillers are implanted. Regarding the GHG emissions, solar distillation is preferable to RO.
With the global warming of the planet, new forms of energy are being sought as an alternative to fossil fuels. Currently, hydrogen (H2) is seen as a strong alternative for fueling vehicles. However, the major challenge in the use of H2 arises from its physical properties. An earlier study was conducted on the storage of H2, used as fuel in road vehicles powered by spark ignition engines or stacks of fuel cells stored under high pressure inside small spheres randomly packed in an envelope tank. Additionally, the study evaluated the performance of this new storage system and compared it with other storage systems already applied by automakers in their vehicles. The current study aims to evaluate the H2 leaks from the same storage system, when inserted in any road vehicle parked in conventional garages, and to show the compliance of these leaks with European Standards, provided that an appropriate choice of materials is made. The system’s compliance with safety standards was proved. Regarding the materials of each component of the storage system, the best option from the pool of materials chosen consists of aluminum for the liner of the spheres and the envelope tank, CFEP for the structural layer of the spheres, and Si for the microchip.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.