In Aveiro (NW coast of Portugal), a coastal monitoring programme was carried out in sequence of a shoreface nourishment intervention (over than 2 M m3) performed in 2020. In this programme, almost one year of biweekly subaerial topographies and quarterly bathymetric surveys have been collected along a 10 km coastal stretch between June 2020 and June 2021. In this study, topographic and bathymetric surveys were analysed to assess the expectation that if the shoreface nourishment is located in sufficiently shallow water depths, its landward movement will feed adjacent beaches and, consequently, increase the subaerial beach volume. Results show that the subaerial beach volume is well correlated with the 1.05 m (above MSL) isoline displacement through time. While the seaward limit of the shoreface nourishment moved landwards about 200 m, the shoreline proxy (isoline of 1.05 m) displayed a maximum seaward displacement of 60 m. The displacement of the shoreline proxy was highly variable in space, along the 10 km coastal stretch, and also in time, during storm events. During such events, both landward and seawards displacement of the shoreline proxy took place, depending on the spatial position. Moreover, while beaches close to the initial shoreface nourishment intervention displayed faster accretion patterns than those located farther away, the well-defined onshore movement of the shoreface nourishment did not result in a considerable beach volume increase. The achieved results were also compared against case studies of shoreface nourishments with similar volumes performed worldwide.
The use of satellite remote sensing images could be a valid alternative to the classical methods of bathymetric measurements for depths less than 30 meters. In this work, several pixels corresponding to different depths are considered to numerically evaluate the relation between the water spectral response and the real depth, in the Douro River Estuary (Porto, Portugal). The main concept relies on principal components analysis, which allows for combining the information of the n available spectral bands from the image into an equal number n of principal components. The dataset is composed by an IKONOS-2 image and bathymetric values. An initial analysis was performed in order to determine the viability of the data for bathymetric study of the Douro River estuary. It was proved that it was not possible to find any direct relationship between the DNs of the IKONOS-2 image and depth values. Therefore, a simple linear regression of the bathymetric values on the IKONOS-2 image principal components was considered. A significant correlation was found between the first principal component and the real depths. In the future, the use of simultaneous data and the use of other statistical models such as decision trees may also provide important contributes to improve this methodology.
Current coastal protection strategy in Portugal defines beach and shoreface nourishment as a valid measure to mitigate coastal erosion in some erosional hot-spots, being considered as an adaptation measure under the present climate change scenario, including the impacts of sea level rise. However, scant objective data on shoreface nourishments are available to evaluate performance of this type of intervention in mitigating beach erosion and managing coast risk. We present the first monitoring results of a ≈2.4 × 106 m3 shoreface nourishment on the Aveiro coast (Costa Nova—Ílhavo), the largest until now in Portugal, focusing on its morphological development, impacts on adjacent beaches due to alongshore spreading and cross-shore redistribution, and contribution to the sediment budget of the nourished sediment cell. The analyses are based on high-resolution coastal monitoring data, provided by the Portuguese COaStal MOnitoring Program (COSMO). A Multiple Monitoring Cell (MMC) approach was used to evaluate local and feeder efficiency of the nourishment, sediment budget exchanges within both the placement and wider survey domains (≈1 km2 and 12 km2, respectively). Results show rapid (ca. 6 months) morphological change over the placement area, with a decrease of about 40% of the initial volume. Fast onshore sediment redistribution explains part of this change, placed sand having merged with the pre-existing bar system increased the volume of the shallower nearshore. Longshore transport is reflected by increasing the robustness of the bar downdrift of the placement area and also explains the negative sediment budget (0.75 × 106 m3) of the survey domain, which corresponds to losses through its southern boundary. Sediment spreading also induced accretion of the subaerial section of Costa Nova beaches in front of the placement area, reversing their long-term erosive trend. In contrast, this trend persisted at downdrift beaches. This suggests that the time lag of the subaerial beach response to this intervention increases with the distance to the placement area, and reversal of the erosive trend will only be noticeable in the following years. This study provides new insights on the time scales of beach response to high-magnitude shoreface interventions in high-energy wave-dominated sandy coasts, which will support decision making regarding similar operations designed to manage erosional hot-spots elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.