In this work, a supervised machine learning (ML) model was developed to detect flow disturbances caused by the presence of a dissimilar material region in liquid moulding manufacturing of composites. The machine learning model was designed to predict the position, size and relative permeability of an embedded rectangular dissimilar material region through use of only the signals corresponding to an array of pressure sensors evenly distributed on the mould surface. The burden of experimental tests required to train in an efficient manner such predictive models is so high that favours its substitution with synthetically-generated simulation datasets. A regression model based on the use of convolutional neural networks (CNN) was developed and trained with data generated from mould-filling simulations carried out through use of OpenFoam as numerical solver. The evolution of the pressure sensors through the filling time was stored and used as grey-level images containing information regarding the pressure, the sensor location within the mould and filling time. The trained CNN model was able to recognise the presence of a dissimilar material region from the data used as inputs, meeting accuracy expectation in terms of detection. The purpose of this work was to establish a general framework for fully-synthetic-trained machine learning models to address the occurrence of manufacturing disturbances without placing emphasis on its performance, robustness and optimization. Accuracy and model robustness were also addressed in the paper. The effect of noise signals, pressure sensor network size, presence of different shape dissimilar regions, among others, were analysed in detail. The ability of ML models to examine and overcome complex physical and engineering problems such as defects produced during manufacturing of materials and parts is particularly innovative and highly aligned with Industry 4.0 concepts.
This work presents a supervised machine learning (ML) model to detect race-tracking disturbances during the liquid moulding manufacturing of structural composites. Race-tracking is generated by unexpected resin channels at mould edges that may induce dry spots and porosity formation. The ML model uses the pressure signals recorded by a sensor network as input, providing a classification of the race-tracking event from a set of possible scenarios, and a subsequent variable regression for their position, size and strength. Such a model is based on the residual network (ResNet), a well-known artificial intelligence architecture that makes use of convolutional neural networks for image recognition. Training of the ML classifier and regressors was carried out with the aid of a synthetically generated simulation data set obtained throughout computational fluid dynamics simulations. The time evolution of the pressure sensors was used as grey-level images, or footprints, as inputs to the ResNet ML. The trained model was able to recognise the presence of race-tracking channels from the pressure data yielding good accuracy in terms of label prediction as well as position, size and strength. The model correlation was carried out with a set of injection experiments performed with a constant thickness closed mould containing induced race-tracking channels. The ability of ML models to provide an approximation to the inverse problem, relating the pressure sensor distortions to the cause of such events, is analysed and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.