Please cite this article in press as: Ramírez-Niño, J., et al. Core saturation effects of geomagnetic induced currents in power transformers.
AbstractSaturation of the magnetic core of transformers in a power system is an important effect that can be attributed to solar Geomagnetic Induced Currents (GICs). This saturation can conduce to voltage-control problems, generating harmonic currents, and heating of the transformer internal components, leading to gas relay alarm/operation and possible damage. This paper presents an analog physical reduced scale model of GICs in power transformers. The instrumentation employed to carry out this study consists of a single-phase reduced scale transformer, a controllable current source, a resistive load and a data acquisition system. The work establishes not only that it is possible to model the behavior of magnetic variables and to extrapolate the results to large full size power transformers, but also provides insight into GICs generation and their effects on power transformers. Obtained results are related to the non-linear behavior of GICs due to asymmetric saturation of the magnetic core in the power transformer, where computational model simulation is not able to give acceptable outcomes. Results are discussed for several GICs magnitudes, which include voltage, current, harmonics waveforms, magnetic core point of operation, the behavior of the stray flow, instantaneous power and core temperature. All Rights Reserved
Paper–oil insulation in power transformers is degraded and gradually damaged due to electrical, chemical, mechanical and moisture factors. It is well established from several studies that moisture is a major source of insulation failure in high voltage power transformers. Measurement and monitoring of moisture is essential to predict life and operation condition for power transformers. This paper presents direct optical measurement of water content at paper insulation immersed in transformer oil inside a test cell, which contains a water source, and a capillary paper bridge to transfer water to the paper inside an oil reservoir. Optical measurement of water content was carried out in the near infrared from 900 to 1500 nm band. Experimental studies of light transmission in transformer oil and water are discussed. The criteria to establish the best optical bands for maximum sensitivities are given. The measurement limitations, calibration procedures and an error analysis are presented. The resulting technique can be used for on-line measurements in electrical apparatus that use oil–paper insulation under large electrical field gradients. The presented method has advantages, since it is a direct and fast technique to measure the water transfer to paper immersed in oil, and it could be applied in compact portable equipment at a low cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.