Many aspects of the porcine reproductive and respiratory syndrome virus (PRRSV) between‐farm transmission dynamics have been investigated, but uncertainty remains about the significance of farm type and different transmission routes on PRRSV spread. We developed a stochastic epidemiological model calibrated on weekly PRRSV outbreaks accounting for the population dynamics in different pig production phases, breeding herds, gilt development units, nurseries and finisher farms, of three hog producer companies. Our model accounted for indirect contacts by the close distance between farms (local transmission), between‐farm animal movements (pig flow) and reinfection of sow farms (re‐break). The fitted model was used to examine the effectiveness of vaccination strategies and complementary interventions such as enhanced PRRSV detection and vaccination delays and forecast the spatial distribution of PRRSV outbreak. The results of our analysis indicated that for sow farms, 59% of the simulated infections were related to local transmission (e.g. airborne, feed deliveries, shared equipment) whereas 36% and 5% were related to animal movements and re‐break, respectively. For nursery farms, 80% of infections were related to animal movements and 20% to local transmission; while at finisher farms, it was split between local transmission and animal movements. Assuming that the current vaccines are 1% effective in mitigating between‐farm PRRSV transmission, weaned pigs vaccination would reduce the incidence of PRRSV outbreaks by 3%, indeed under any scenario vaccination alone was insufficient for completely controlling PRRSV spread. Our results also showed that intensifying PRRSV detection and/or vaccination pigs at placement increased the effectiveness of all simulated vaccination strategies. Our model reproduced the incidence and PRRSV spatial distribution; therefore, this model could also be used to map current and future farms at‐risk. Finally, this model could be a useful tool for veterinarians, allowing them to identify the effect of transmission routes and different vaccination interventions to control PRRSV spread.
Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks.
Due to the COVID-19 pandemic, many key neglected tropical disease (NTD) activities have been postponed. This hindrance comes at a time when the NTDs are progressing towards their ambitious goals for 2030. Mathematical modelling on several NTDs, namely gambiense sleeping sickness, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminthiases (STH), trachoma, and visceral leishmaniasis, shows that the impact of this disruption will vary across the diseases. Programs face a risk of resurgence, which will be fastest in high-transmission areas. Furthermore, of the mass drug administration diseases, schistosomiasis, STH, and trachoma are likely to encounter faster resurgence. The case-finding diseases (gambiense sleeping sickness and visceral leishmaniasis) are likely to have fewer cases being detected but may face an increasing underlying rate of new infections. However, once programs are able to resume, there are ways to mitigate the impact and accelerate progress towards the 2030 goals.
BackgroundWith the 2020 target year for elimination of lymphatic filariasis (LF) approaching, there is an urgent need to assess how long mass drug administration (MDA) programs with annual ivermectin + albendazole (IA) or diethylcarbamazine + albendazole (DA) would still have to be continued, and how elimination can be accelerated. We addressed this using mathematical modeling.MethodsWe used 3 structurally different mathematical models for LF transmission (EPIFIL, LYMFASIM, TRANSFIL) to simulate trends in microfilariae (mf) prevalence for a range of endemic settings, both for the current annual MDA strategy and alternative strategies, assessing the required duration to bring mf prevalence below the critical threshold of 1%.ResultsThree annual MDA rounds with IA or DA and good coverage (≥65%) are sufficient to reach the threshold in settings that are currently at mf prevalence <4%, but the required duration increases with increasing mf prevalence. Switching to biannual MDA or employing triple-drug therapy (ivermectin, diethylcarbamazine, and albendazole [IDA]) could reduce program duration by about one-third. Optimization of coverage reduces the time to elimination and is particularly important for settings with a history of poorly implemented MDA (low coverage, high systematic noncompliance).ConclusionsModeling suggests that, in several settings, current annual MDA strategies will be insufficient to achieve the 2020 LF elimination targets, and programs could consider policy adjustment to accelerate, guided by recent monitoring and evaluation data. Biannual treatment and IDA hold promise in reducing program duration, provided that coverage is good, but their efficacy remains to be confirmed by more extensive field studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.