Multi-objective optimization problems deal with the presence of different conflicting objectives. Given that it is not possible to obtain a single solution by optimizing all the objectives simultaneously, a common way to face these problems is to obtain a set of efficient solutions called the non-dominated frontier. In this paper we address the problem of routing school buses with two objectives: minimize the number of buses, and minimize the longest time a student would have to stay in the bus. The tradeoff in this problem is between service level, which is represented by the maximum route length, and operational cost, which is represented by the number of buses in the solution. We present different constructive solution methods and a tabu search procedure to obtain non-dominated solutions. The procedure is coupled with an intensification phase based on the path relinking methodology; a strategy proposed several years ago, which has been rarely used in actual implementations. Computational experiments with real data in the context of routing school buses in a rural area, establish the effectiveness of our procedure in relation to the approach previously identified to be best.
The speed by which the COVID-19 pandemic spread throughout the world caught some national and local governments unprepared. Healthcare systems found themselves struggling to increase capacity and procure key supplies, such as personal protective equipment. Protective face shields became essential for healthcare professionals. However, most hospitals and healthcare facilities did not have them in adequate quantities. The urgency of producing and delivering face shields increased as the number of COVID-19 cases rapidly multiplied. This was the situation that we encountered in the city and province of Burgos (Spain). Since there was no time to wait for a large manufacturer to produce face shields, private citizens and small companies volunteered to make them using technologies such as 3D printers. Nonprofits, citizens, and governments agencies volunteered to deliver materials to the face shield makers and to pick up and deliver the face shields to health centers and other locations where they were needed. This resulted in a vehicle routing problem with some special characteristics that made it different from models used for commercial purposes. We describe the development of a heuristic to find feasible and efficient routes for this problem. We highlight the advantages of using heuristics in an emergency context like the one triggered by the COVID-19 pandemic. In particular, the heuristic approach allowed us to design, implement, test, and delivery a routing system in less than 1 week from the time that the local government contacted us with what they described as a logistics nightmare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.