Lyme borreliosis, one of the most frequently contracted zoonotic diseases in the Northern Hemisphere, is caused by bacteria belonging to different genetic groups within the Borrelia burgdorferi species complex, which are transmitted by ticks among various wildlife reservoirs, such as small mammals and birds. These features make the Borrelia burgdorferi species complex an attractive biological model that can be used to study the diversification and the epidemiology of endemic bacterial pathogens. We investigated the potential of population genomic approaches to study these processes. Sixty-three strains belonging to three species within the Borrelia burgdorferi complex were isolated from questing ticks in Alsace (France), a region where Lyme disease is highly endemic. We first aimed to characterize the degree of genetic isolation among the species sampled. Phylogenetic and coalescent-based analyses revealed clear delineations: there was a ∼50 fold difference between intra-specific and inter-specific recombination rates. We then investigated whether the population genomic data contained information of epidemiological relevance. In phylogenies inferred using most of the genome, conspecific strains did not cluster in clades. These results raise questions about the relevance of different strategies when investigating pathogen epidemiology. For instance, here, both classical analytic approaches and phylodynamic simulations suggested that population sizes and migration rates were higher in B. garinii populations, which are normally associated with birds, than in B. burgdorferi s.s. populations. The phylogenetic analyses of the infection-related ospC gene and its flanking region provided additional support for this finding. Traces of recombination among the B. burgdorferi s.s. lineages and lineages associated with small mammals were found, suggesting that they shared the same hosts. Altogether, these results provide baseline evidence that can be used to formulate hypotheses regarding the host range of B. burgdorferi lineages based on population genomic data.
Risk mapping in epidemiology enables areas with a low or high risk of disease contamination to be localized and provides a measure of risk differences between these regions. Risk mapping models for pooled data currently used by epidemiologists focus on the estimated risk for each geographical unit. They are based on a Poisson log-linear mixed model with a latent intrinsic continuous hidden Markov random field (HMRF) generally corresponding to a Gaussian autoregressive spatial smoothing. Risk classification, which is necessary to draw clearly delimited risk zones (in which protection measures may be applied), generally must be performed separately. We propose a method for direct classified risk mapping based on a Poisson log-linear mixed model with a latent discrete HMRF. The discrete hidden field (HF) corresponds to the assignment of each spatial unit to a risk class. The risk values attached to the classes are parameters and are estimated. When mapping risk using HMRFs, the conditional distribution of the observed field is modeled with a Poisson rather than a Gaussian distribution as in image segmentation. Moreover, abrupt changes in risk levels are rare in disease maps. The spatial hidden model should favor smoothed out risks, but conventional discrete Markov random fields (e.g. the Potts model) do not impose this. We therefore propose new potential functions for the HF that take into account class ordering. We use a Monte Carlo version of the expectation-maximization algorithm to estimate parameters and determine risk classes. We illustrate the method's behavior on simulated and real data sets. Our method appears particularly well adapted to localize high-risk regions and estimate the corresponding risk levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.