The python analysis framework and data files are available for download at http://www.ibi.vu.nl/downloads/bioinformatics-2013-btt675.tgz.
High-throughput molecular profiling techniques are routinely generating vast amounts of data for translational medicine studies. Secure access controlled systems are needed to manage, store, transfer and distribute these data due to its personally identifiable nature. The European Genome-phenome Archive (EGA) was created to facilitate access and management to long-term archival of bio-molecular data. Each data provider is responsible for ensuring a Data Access Committee is in place to grant access to data stored in the EGA. Moreover, the transfer of data during upload and download is encrypted. ELIXIR, a European research infrastructure for life-science data, initiated a project (2016 Human Data Implementation Study) to understand and document the ELIXIR requirements for secure management of controlled-access data. As part of this project, a full ecosystem was designed to connect archived raw experimental molecular profiling data with interpreted data and the computational workflows, using the CTMM Translational Research IT (CTMM-TraIT) infrastructure http://www.ctmm-trait.nl as an example. Here we present the first outcomes of this project, a framework to enable the download of EGA data to a Galaxy server in a secure way. Galaxy provides an intuitive user interface for molecular biologists and bioinformaticians to run and design data analysis workflows. More specifically, we developed a tool -- ega_download_streamer - that can download data securely from EGA into a Galaxy server, which can subsequently be further processed. This tool will allow a user within the browser to run an entire analysis containing sensitive data from EGA, and to make this analysis available for other researchers in a reproducible manner, as shown with a proof of concept study. The tool ega_download_streamer is available in the Galaxy tool shed: https://toolshed.g2.bx.psu.edu/view/yhoogstrate/ega_download_streamer.
The availability of high-throughput molecular profiling techniques has provided more accurate and informative data for regular clinical studies. Nevertheless, complex computational workflows are required to interpret these data. Over the past years, the data volume has been growing explosively, requiring robust human data management to organise and integrate the data efficiently. For this reason, we set up an ELIXIR implementation study, together with the Translational research IT (TraIT) programme, to design a data ecosystem that is able to link raw and interpreted data. In this project, the data from the TraIT Cell Line Use Case (TraIT-CLUC) are used as a test case for this system. Within this ecosystem, we use the European Genome-phenome Archive (EGA) to store raw molecular profiling data; tranSMART to collect interpreted molecular profiling data and clinical data for corresponding samples; and Galaxy to store, run and manage the computational workflows. We can integrate these data by linking their repositories systematically. To showcase our design, we have structured the TraIT-CLUC data, which contain a variety of molecular profiling data types, for storage in both tranSMART and EGA. The metadata provided allows referencing between tranSMART and EGA, fulfilling the cycle of data submission and discovery; we have also designed a data flow from EGA to Galaxy, enabling reanalysis of the raw data in Galaxy. In this way, users can select patient cohorts in tranSMART, trace them back to the raw data and perform (re)analysis in Galaxy. Our conclusion is that the majority of metadata does not necessarily need to be stored (redundantly) in both databases, but that instead FAIR persistent identifiers should be available for well-defined data ontology levels: study, data access committee, physical sample, data sample and raw data file. This approach will pave the way for the stable linkage and reuse of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.