We develop a high-order kinetic scheme for entropy-based moment models of a one-dimensional linear kinetic equation in slab geometry. High-order spatial reconstructions are achieved using the weighted essentially non-oscillatory (WENO) method, and for time integration we use multi-step Runge-Kutta methods which are strong stability preserving and whose stages and steps can be written as convex combinations of forward Euler steps. We show that the moment vectors stay in the realizable set using these time integrators along with a maximum principle-based kinetic-level limiter, which simultaneously dampens spurious oscillations in the numerical solutions. We present numerical results both on a manufactured solution, where we perform convergence tests showing our scheme converges of the expected order up to the numerical noise from the numerical optimization, as well as on two standard benchmark problems, where we show some of the advantages of high-order solutions and the role of the key parameter in the limiter.
In this article we present a method to extend high order finite volume schemes to networks of hyperbolic conservation laws with algebraic coupling conditions. This method is based on an ADER approach in time to solve the generalized Riemann problem at the junction. Additionally to the high order accuracy, this approach maintains an exact conservation of quantities if stated by the coupling conditions. Several numerical examples confirm the benefits of a high order coupling procedure for high order accuracy and stable shock capturing.
In this paper we consider kinetic and associated macroscopic models for chemotaxis on a network. Coupling conditions at the nodes of the network for the kinetic problem are presented and used to derive coupling conditions for the macroscopic approximations. The results of the different models are compared and relations to a Keller-Segel model on networks are discussed. For a numerical approximation of the governing equations asymptotic preserving relaxation schemes are extended to directed graphs. Kinetic and macroscopic equations are investigated numerically and their solutions are compared for tripod and more general networks
In this paper we construct high order finite volume schemes on networks of hyperbolic conservation laws with coupling conditions involving ODEs. We consider two generalized Riemann solvers at the junction, one of Toro-Castro type and a solver of Harten, Enquist, Osher, Chakravarthy type. The ODE is treated with a Taylor method or an explicit Runge-Kutta scheme, respectively. Both resulting high order methods conserve quantities exactly if the conservation is part of the coupling conditions. Furthermore we present a technique to incorporate lumped parameter models, which arise from simplifying parts of a network. The high order convergence and the robust capturing of shocks is investigated numerically in several test cases.
Mixed-moment models, introduced in [14,29] for one space dimension, are a modification of the method of moments applied to a (linear) kinetic equation, by choosing mixtures of different partial moments. They are well-suited to handle such equations where collisions of particles are modelled with a Laplace-Beltrami operator. We generalize the concept of mixed moments to two dimension. The resulting hyperbolic system of equations has desirable properties, removing some drawbacks of the well-known M 1 model. We furthermore provide a realizability theory for a first-order system of mixed moments by linking it to the corresponding quarter-moment theory. Additionally, we derive a type of Kershaw closures for mixed-and quarter-moment models, giving an efficient closure (compared to minimum-entropy models). The derived closures are investigated for different benchmark problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.