BackgroundNotch signalling regulates cell fate in most tissues, promoting precursor cell proliferation in some, but differentiation in others. Accordingly, downregulation or overactivity variously contributes to cancer development. So far, little is known about Notch pathway activity and function in the normal urothelium and in urothelial carcinoma (UC). We have therefore investigated expression of Notch pathway components in UC tissues and cell lines and studied the function of one receptor, NOTCH1, in detail.MethodsExpression of canonical Notch pathway components were studied in UC and normal bladder tissues by immunohistochemistry and quantitative RT-PCR and in UC cell lines and normal cultured urothelial cells by qRT-PCR, immunocytochemistry and Western blotting. Pathway activity was measured by reporter gene assays. Its influence on cell proliferation was investigated by γ-secretase inhibition. Effects of NOTCH1 restoration were followed by measuring cell cycle distribution, proliferation, clonogenicity and nuclear morphology.ResultsNOTCH1 and its ligand, DLL1, were expressed at plasma membranes and in the cytoplasm of cells in the upper normal urothelium layer, but became downregulated in UC tissues, especially in high-stage tumours. In addition, the proteins were often delocalized intracellularly. According differences were observed in UC cell lines compared to normal urothelial cells. Canonical Notch pathway activity in reporter assays was repressed in UC cell lines compared to normal cells and a mammary carcinoma cell line, but was induced by transfected NOTCH1. Inhibitors of Notch signalling acting at the γ-secretase step did not affect UC cell proliferation at concentrations efficacious against a cell line with known Notch activity. Surprisingly, overexpression of NOTCH1 into UC cell lines did not significantly affect short-term cell proliferation, but induced nuclear abnormalities and diminished clonogenicity.ConclusionOur data indicate that canonical Notch signalling is suppressed in urothelial carcinoma mainly through downregulation of NOTCH1. These findings can be explained by proposing that canonical Notch signalling may promote differentiation in the urothelium, like in many squamous epithelia, and its suppression may therefore be advantageous for tumour progression. As an important corollary, inhibition of canonical Notch signalling is unlikely to be efficacious and might be counter-productive in the treatment of urothelial carcinoma.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2407-14-628) contains supplementary material, which is available to authorized users.
Aside from mature adipocytes, adipose tissue harbors several distinct cell populations including immune cells, endothelial cells, and adipogenic progenitor cells (AdPCs). AdPCs represent the reservoir of regenerative cells that replenishes adipocytes during normal cellular turnover and during times of increased demand for triglyceride-storage capacity. The worldwide increase in pathologies associated with the metabolic syndrome, such as obesity and type-2 diabetes, has heightened public and scientific interest in adipose tissues and the cell biological processes of adipose tissue formation and function. Two distinct types of fat cells are known: White and brown adipocytes. Especially brown adipose tissue (BAT) has received considerable attention due to its unique capacity for thermogenic energy expenditure and potential role in the treatment of adiposity. Accordingly, the cold-induced conversion of white into brown-like adipocytes has become a feasible approach in humans and a study-subject in rodents to better understand the underlying molecular processes. Fluorescence-activated cell sorting (FACS) provides a method to isolate AdPCs and other cell populations from adipose tissue by using antibodies detecting unique surface markers. We here describe an approach to isolate cells committed to the adipogenic lineage and summarize established protocols to differentiate FACS-purified primary AdPCs into UCP1-expressing brown adipocytes under in vitro conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.