SummaryAging and obesity induce ectopic adipocyte accumulation in bone marrow cavities. This process is thought to impair osteogenic and hematopoietic regeneration. Here we specify the cellular identities of the adipogenic and osteogenic lineages of the bone. While aging impairs the osteogenic lineage, high-fat diet feeding activates expansion of the adipogenic lineage, an effect that is significantly enhanced in aged animals. We further describe a mesenchymal sub-population with stem cell-like characteristics that gives rise to both lineages and, at the same time, acts as a principal component of the hematopoietic niche by promoting competitive repopulation following lethal irradiation. Conversely, bone-resident cells committed to the adipocytic lineage inhibit hematopoiesis and bone healing, potentially by producing excessive amounts of Dipeptidyl peptidase-4, a protease that is a target of diabetes therapies. These studies delineate the molecular identity of the bone-resident adipocytic lineage, and they establish its involvement in age-dependent dysfunction of bone and hematopoietic regeneration.
ObjectiveFibroblast growth factor 21 (FGF21) was recently discovered as stress-induced myokine during mitochondrial disease and proposed as key metabolic mediator of the integrated stress response (ISR) presumably causing systemic metabolic improvements. Curiously, the precise cell-non-autonomous and cell-autonomous relevance of endogenous FGF21 action remained poorly understood.MethodsWe made use of the established UCP1 transgenic (TG) mouse, a model of metabolic perturbations made by a specific decrease in muscle mitochondrial efficiency through increased respiratory uncoupling and robust metabolic adaptation and muscle ISR-driven FGF21 induction. In a cross of TG with Fgf21-knockout (FGF21−/−) mice, we determined the functional role of FGF21 as a muscle stress-induced myokine under low and high fat feeding conditions.ResultsHere we uncovered that FGF21 signaling is dispensable for metabolic improvements evoked by compromised mitochondrial function in skeletal muscle. Strikingly, genetic ablation of FGF21 fully counteracted the cell-non-autonomous metabolic remodeling and browning of subcutaneous white adipose tissue (WAT), together with the reduction of circulating triglycerides and cholesterol. Brown adipose tissue activity was similar in all groups. Remarkably, we found that FGF21 played a negligible role in muscle mitochondrial stress-related improved obesity resistance, glycemic control and hepatic lipid homeostasis. Furthermore, the protective cell-autonomous muscle mitohormesis and metabolic stress adaptation, including an increased muscle proteostasis via mitochondrial unfolded protein response (UPRmt) and amino acid biosynthetic pathways did not require the presence of FGF21.ConclusionsHere we demonstrate that although FGF21 drives WAT remodeling, the adaptive pseudo-starvation response under elevated muscle mitochondrial stress conditions operates independently of both WAT browning and FGF21 action. Thus, our findings challenge FGF21 as key metabolic mediator of the mitochondrial stress adaptation and powerful therapeutic target during muscle mitochondrial disease.
Aging is one of the primary risk factors for the development of obesity, a pathology that develops due to an imbalance of increased energy consumption over reduced expenditure. Brown adipocytes are responsible for thermogenesis and could therefore counter obesity by increasing energy expenditure. It is by now well established that humans possess thermogenesis-competent brown adipocytes throughout life, and recent findings indicate that brown fat is actively involved in metabolic control and body weight regulation in adults. Aging is accompanied by a loss of classical brown adipocytes as well as the brown-like adipocytes found in white adipose tissue, suggesting that loss of their energy-expending capacity might contribute to an obesity-prone phenotype with increased age. We here discuss the hypothesis that the age-related loss of brown adipocyte regenerative capacity is a result of dysfunctional stem/progenitor cells. The possible molecular mechanisms that lead to an age-related decline in brown adipogenic stem/progenitor cell function include cell-autonomous and external effects. General loss of mitochondrial biogenesis and function has repeatedly been linked to age-related perturbation of metabolic processes. We also discuss the possibility that alterations in neuronal control by the sympathetic nervous system may contribute to impaired regeneration and thermogenesis in aged brown adipocytes. Finally, age-related changes of endocrine signals have been proposed to exacerbate the loss of brown adipose tissue. In conclusion, age-induced impairment of brown adipogenic stem/progenitor cell function could contribute to the loss of brown adipocyte regeneration, thereby promoting the development of obesity and other metabolic disorders with age.
Objective Aging is accompanied by loss of brown adipocytes and a decline in their thermogenic potential, which may exacerbate the development of adiposity and other metabolic disorders. Presently, only limited evidence exists describing the molecular alterations leading to impaired brown adipogenesis with aging and the contribution of these processes to changes of systemic energy metabolism. Methods Samples of young and aged murine brown and white adipose tissue were used to compare age-related changes of brown adipogenic gene expression and thermogenesis-related lipid mobilization. To identify potential markers of brown adipose tissue aging, non-targeted proteomic and metabolomic as well as targeted lipid analyses were conducted on young and aged tissue samples. Subsequently, the effects of several candidate lipid classes on brown adipocyte function were examined. Results Corroborating previous reports of reduced expression of uncoupling protein-1, we observe impaired signaling required for lipid mobilization in aged brown fat after adrenergic stimulation. Omics analyses additionally confirm the age-related impairment of lipid homeostasis and reveal the accumulation of specific lipid classes, including certain sphingolipids, ceramides, and dolichols in aged brown fat. While ceramides as well as enzymes of dolichol metabolism inhibit brown adipogenesis, inhibition of sphingosine 1-phosphate receptor 2 induces brown adipocyte differentiation. Conclusions Our functional analyses show that changes in specific lipid species, as observed during aging, may contribute to reduced thermogenic potential. They thus uncover potential biomarkers of aging as well as molecular mechanisms that could contribute to the degradation of brown adipocytes, thereby providing potential treatment strategies of age-related metabolic conditions.
Remodeling of the extracellular matrix is a key component of the metabolic adaptations of adipose tissue in response to dietary and physiological challenges. Disruption of its integrity is a well‐known aspect of adipose tissue dysfunction, for instance, during aging and obesity. Adipocyte regeneration from a tissue‐resident pool of mesenchymal stem cells is part of normal tissue homeostasis. Among the pathophysiological consequences of adipogenic stem cell aging, characteristic changes in the secretory phenotype, which includes matrix‐modifying proteins, have been described. Here, we show that the expression of the matricellular protein periostin, a component of the extracellular matrix produced and secreted by adipose tissue‐resident interstitial cells, is markedly decreased in aged brown and white adipose tissue depots. Using a mouse model, we demonstrate that the adaptation of adipose tissue to adrenergic stimulation and high‐fat diet feeding is impaired in animals with systemic ablation of the gene encoding for periostin. Our data suggest that loss of periostin attenuates lipid metabolism in adipose tissue, thus recapitulating one aspect of age‐related metabolic dysfunction. In human white adipose tissue, periostin expression showed an unexpected positive correlation with age of study participants. This correlation, however, was no longer evident after adjusting for BMI or plasma lipid and liver function biomarkers. These findings taken together suggest that age‐related alterations of the adipose tissue extracellular matrix may contribute to the development of metabolic disease by negatively affecting nutrient homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.