SummaryAging and obesity induce ectopic adipocyte accumulation in bone marrow cavities. This process is thought to impair osteogenic and hematopoietic regeneration. Here we specify the cellular identities of the adipogenic and osteogenic lineages of the bone. While aging impairs the osteogenic lineage, high-fat diet feeding activates expansion of the adipogenic lineage, an effect that is significantly enhanced in aged animals. We further describe a mesenchymal sub-population with stem cell-like characteristics that gives rise to both lineages and, at the same time, acts as a principal component of the hematopoietic niche by promoting competitive repopulation following lethal irradiation. Conversely, bone-resident cells committed to the adipocytic lineage inhibit hematopoiesis and bone healing, potentially by producing excessive amounts of Dipeptidyl peptidase-4, a protease that is a target of diabetes therapies. These studies delineate the molecular identity of the bone-resident adipocytic lineage, and they establish its involvement in age-dependent dysfunction of bone and hematopoietic regeneration.
Summary
Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation towards cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis.
Bone-related maladies are a major health burden on modern society. Loss of skeletal integrity and regeneration capacity through aging, obesity, and disease follows from a detrimental shift in bone formation and resorption dynamics. Targeting tissue-resident adult stem cells offers a potentially innovative paradigm in the development of therapeutic strategies against organ dysfunction. While the essential role of skeletal stem cells (SSCs) for development, growth, and maintenance of the skeleton has been generally established, a common consensus on the exact identity and definition of a pure bona fide SSC population remains elusive. The controversies stem from conflicting results between different approaches and criteria for isolation, detection, and functional evaluation; along with the interchangeable usage of the terms SSC and “mesenchymal stromal/stem cell (MSC)”. A great number of prospective bone-forming stem cell populations have been reported with various characteristic markers, often describing overlapping cell populations with widely unexplored heterogeneity, species specificity, and distribution at distinct skeletal sites, bone regions, and microenvironments, thereby creating confusion that may complicate future advances in the field. In this review, we examine the state-of-the-art knowledge of SSC biology and try to establish a common ground for the definition and terminology of specific bone-resident stem cells. We also discuss recent advances in the identification of highly purified SSCs, which will allow detailed interrogation of SSC diversity and regulation at the single-cell level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.