A person seeking another person's attention is normally able to quickly assess how interruptible the other person currently is. Such assessments allow behavior that we consider natural, socially appropriate, or simply polite. This is in sharp contrast to current computer and communication systems, which are largely unaware of the social situations surrounding their usage and the impact that their actions have on these situations. If systems could model human interruptibility, they could use this information to negotiate interruptions at appropriate times, thus improving human computer interaction.This article presents a series of studies that quantitatively demonstrate that simple sensors can support the construction of models that estimate human interruptibility as well as people do. These models can be constructed without using complex sensors, such as vision-based techniques, and therefore their use in everyday office environments is both practical and affordable. Although currently based on a demographically limited sample, our results indicate a substantial opportunity for future research to validate these results over larger groups of office workers. Our results also motivate the development of systems that use these models to negotiate interruptions at socially appropriate times.
Abstract-Valerie the Roboceptionist is the most recent addition to Carnegie Mellon's Social Robots Project. A permanent installation in the entranceway to Newell-Simon Hall, the robot combines useful functionality-giving directions, looking up weather forecasts, etc.-with an interesting and compelling character. We are using Valerie to investigate human-robot social interaction, especially long-term human-robot "relationships." Over a nine-month period, we have found that many visitors continue to interact with the robot on a daily basis, but that few of the individual interactions last for more than 30 seconds. Our analysis of the data has indicated several design decisions that should facilitate more natural human-robot interactions.
With a focus on presenting information at the right time, the ubicomp community can benefit greatly from learning the most salient human measures of cognitive load. Cognitive load can be used as a metric to determine when or whether to interrupt a user. In this paper, we collected data from multiple sensors and compared their ability to assess cognitive load. Our focus is on visual perception and cognitive speed-focused tasks that leverage cognitive abilities common in ubicomp applications. We found that across all participants, the electrocardiogram median absolute deviation and median heat flux measurements were the most accurate at distinguishing between low and high levels of cognitive load, providing a classification accuracy of over 80% when used together. Our contribution is a real-time, objective, and generalizable method for assessing cognitive load in cognitive tasks commonly found in ubicomp systems and situations of divided attention.
A person seeking someone else's attention is normally able to quickly assess how interruptible they are. This assessment allows for behavior we perceive as natural, socially appropriate, or simply polite. On the other hand, today's computer systems are almost entirely oblivious to the human world they operate in, and typically have no way to take into account the interruptibility of the user. This paper presents a Wizard of Oz study exploring whether, and how, robust sensor-based predictions of interruptibility might be constructed, which sensors might be most useful to such predictions, and how simple such sensors might be.The study simulates a range of possible sensors through human coding of audio and video recordings. Experience sampling is used to simultaneously collect randomly distributed self-reports of interruptibility. Based on these simulated sensors, we construct statistical models predicting human interruptibility and compare their predictions with the collected self-report data. The results of these models, although covering a demographically limited sample, are very promising, with the overall accuracy of several models reaching about 78%. Additionally, a model tuned to avoiding unwanted interruptions does so for 90% of its predictions, while retaining 75% overall accuracy.
Most motion in robotics is purely functional, planned to achieve the goal and avoid collisions. Such motion is great in isolation, but collaboration affords a human who is watching the motion and making inferences about it, trying to coordinate with the robot to achieve the task. This paper analyzes the benefit of planning motion that explicitly enables the collaborator's inferences on the success of physical collaboration, as measured by both objective and subjective metrics. Results suggest that legible motion, planned to clearly express the robot's intent, leads to more fluent collaborations than predictable motion, planned to match the collaborator's expectations. Furthermore, purely functional motion can harm coordination, which negatively affects both task efficiency, as well as the participants' perception of the collaboration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.