Phorbol esters activate protein kinase C (PKC) and also increase the secretion of neuro‐transmitter substances by an unknown mechanism. To evaluate whether the stimulatory effects of such agents on acetylcholine (ACh) secretion occur as a consequence of stimulation of Ca2+ entry, we made electrophysiological measurements of ACh secretion (i.e. endplate potentials, EPPs) and the component of the prejunctional perineural voltage change associated with nerve terminal calcium currents (perineural calcium current) at frog neuro‐muscular junctions.
In the first series of experiments, modest concentrations of K+ channel blockers were employed so that simultaneous measurements of EPP amplitudes and perineural calcium currents could be made. In these experiments, 12‐O‐tetradecanoylphorbol 13‐acetate (TPA; 162 nm) and phorbol 12,13‐dibutyrate (PDBu; 100‐200 nm) each increased ACh release but simultaneously decreased the calcium component of the prejunctional perineural current. TPA and PDBu also inhibited perineural calcium currents in the presence of higher concentrations of K+ channel blockers.
Blockade of Ca2+ channels by Cd2+ prevented the action of PKC stimulators on perineural waveforms.
The inactive compound 4‐α‐phorbol 12‐myristate 13‐acetate (150 nm) did not affect EPP amplitudes or perineural currents.
The extracellular [Ca2+]‐ACh release relationship was increased in maximum by PDBu without any change in the potency of Ca2+ to support evoked ACh release.
The results demonstrate that phorbol esters increase neurotransmitter secretion whilst simultaneously decreasing the nerve ending calcium currents that promote evoked release. The results, which suggest that the optimal control point for secretion might not be the calcium channel but rather a component of the secretory apparatus, are discussed in conjunction with the possible target sites for phorbol esters in the nerve ending.
Rab3A, a small GTP-binding protein attached to synaptic vesicles, has been implicated in several stages in the process of neurosecretion, including a late stage occurring just prior to the actual release of neurotransmitter. The inhibitory neuromodulator adenosine also targets a late step in the neurosecretory pathway. We thus compared neuromuscular junctions from adult Rab3A
1 The importance of adenosine 3': 5'-cyclic monophosphate (cyclic AMP) and its protein kinase (protein kinase A, PKA) in promoting acetylcholine (ACh) release was studied at frog motor nerve endings. The effects of cyclic AMP-dependent protein phosphorylation on the action of adenosine receptor agonists were also investigated. 2 Cyclic AMP was delivered to a local region of the cytoplasm just beneath the plasma membrane of motor nerve endings using phospholipid vesicles (liposomes) as a vehicle. Cyclic AMP in liposomes produced a parallel reduction in the mean level of evoked ACh release (m) and spontaneous ACh release (miniature endplate potential frequency; m.e.p.pf) in most experiments. These inhibitory effects of cyclic AMP on quantal ACh release resemble the action of adenosine. 3 The effects of global increases in cytoplasmic cyclic AMP concentrations using lipophilic cyclic AMP analogues were generally different from those observed with cyclic AMP. 8-(4-Chlorophenylthio) cyclic AMP (CPT cyclic AMP) produced approximately two fold increases in m and m.e.p.p.f. Dibutyryl cyclic AMP (db cyclic AMP) also increased m and m.e.p.p.f, with the effect on m being smaller and more variable. 4 All three cyclic AMP analogues reduced the effects of adenosine receptor agonists on spontaneous and evoked ACh release. 5 The roles of protein phosphorylation in mediating ACh release and the inhibitory effects of adenosine were studied with the protein kinase inhibitor H7. H7 (3O-100,uM) produced no consistent effect on evoked or spontaneous ACh release. At these concentrations, however, H7 exerted an unfortunate inhibitory action on the nicotinic ACh receptor/ion channel. 6 H7 prevented the increases in spontaneous ACh release produced by CPT cyclic AMP (250pM). Thus H7 is likely to inhibit PK A in frog motor nerve endings. 7 H7 did not alter the inhibitory effect of adenosine on evoked and spontaneous ACh release. 8 The results suggest: (i) that the adenylyl cyclase-cyclic AMP-PK A system is compartmentalized within the motor nerve terminal, (ii) that phosphorylation does not play a major role in ACh release and (iii) the cyclic AMP-PK A system modulates rather than mediates the inhibitory effects of adenosine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.