A new gene, designated Smcx, was cloned from the mouse X chromosome by its homology to the Y located gene Smcy. Using direct in situ hybridisation Smcx was mapped to the distal end of the mouse X chromosome (XF2-XF4) and its human homologue, SMCX, was mapped to proximal Xp (Xp11.1-Xp11.2). Further meiotic mapping in the mouse placed Smcx in the Plp-Pdha1 interval. As Smcx/SMCX have widely expressed homologues on the Y chromosome, they appeared good candidates for genes that escape X-inactivation. In the human we show this to be the case as SMCX is expressed in hamster-human hybrids containing either an active or inactive human X chromosome. Two alleles of Smcx were found to be expressed in T(16;X)16H female mice despite the intact X chromosome being inactive in all cells. This indicates that Smcx is also not subject to X-inactivation and provides the first example of a gene that is expressed from inactive and active X chromosomes in the mouse.
A new mouse Y chromosome gene, Smcy, has been isolated from the region encoding Spy, a spermatogenesis gene and Hya and Sdma, the genes that, respectively, control the expression of the male specific minor histocompatibility antigen H-Y, as measured by specific T-cell assays and the serologically detected male antigen SDMA. Smcy is well conserved on the Y in mouse, man and even marsupials. It is expressed in all adult male tissues tested and can also be detected during mouse development from as early as two cells. In addition, its human Y homologue, SMCY, is expressed in multiple tissues and maps to the same Yq deletion interval as the human H-Y antigen controlling locus, HY.
Prostate cancer has become the most frequently occurring cancer and the second leading cause of cancer deaths in men. One novel approach to combat prostate cancer is gene therapy. A replication-deficient recombinant adenoviral vector (AdRSVlacZ) expressing bacterial -galactosidase (-gal) (lacZ ) under the control of the Rous sarcoma virus promoter was used to determine which delivery route was best for the transduction of adenoviral vectors to the prostate. Using a canine model, adenoviral vectors were administered by intravenous, intra-arterial, and intraprostatic (i.p.) injections. After injections, the expression of the lacZ gene was measured in canine prostates as well as in various other organs to determine the distribution of the disseminated adenoviral vector by (a) the percentage of cells expressing lacZ in situ (5-bromo-4-chloro-3-indolyl -D-galactoside staining), (b) -gal enzymatic activity (colorimetric -gal assay), and (c) polymerase chain reaction of genomic DNA using primers specific for the adenoviral genome. An i.p. injection of the adenoviral vector resulted in a greater transduction rate and expression level of lacZ in the prostate than either intravenous or intra-arterial (inferior vesical/prostatic artery) injections. Thus, an i.p. (or intratumoral) injection seems to be the best route to treat local regional prostate cancer by viral-based gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.