The ATP-binding cassette transporter 2 (ABCA2) is an endolysosomal protein most highly expressed in the central and peripheral nervous system tissues and macrophages. Previous studies indicated its role in cholesterol/steroid (estramustine, estradiol, and progesterone) trafficking/sequestration, oxidative stress response, and Alzheimer's disease. Developmental studies have shown its expression during macrophage and oligodendrocyte differentiation, processes requiring membrane growth. To determine the in vivo function(s) of this transporter, we generated a knockout mouse from a gene-targeted disruption of the murine ABCA2 gene. Knockout males and females are viable and fertile. However, a non-Mendelian inheritance pattern was shown among male progeny of heterozygous crosses. Compared to wild-type and heterozygous littermates, knockout mice displayed a tremor without ataxia, hyperactivity, and reduced body weight; the latter two phenotypes were more marked in females than in males. This sexual disparity suggests a role for ABCA2 in hormone-dependent neurological and/or developmental pathways. Myelin sheath thickness in the spinal cords of knockout mice was greatly increased compared to that in wild-type mice, while a significant reduction in myelin membrane periodicity (compaction) was observed in both spinal cords and cerebra of knockout mice. Loss of ABCA2 function in vivo resulted in abnormal myelin compaction in spinal cord and cerebrum, an ultrastructural defect that we propose to be the cause of the phenotypic tremor.
ATP-binding cassette (ABC) transporters comprise a family of critical membrane bound proteins functioning in the translocation of molecules across cellular membranes. Substrates for transport include lipids, cholesterol and pharmacological agents. Mutations in ABC transporter genes cause a variety of human pathologies and elicit drug resistance phenotypes in cancer cells. ABCA2, the second member the A subfamily to be identified, was highly expressed in ovarian carcinoma cells resistant to the anti-cancer agent, estramustine, and more recently, in human vestibular schwannomas. Cells expressing elevated levels of ABCA2 show resistance to variety of compounds, including estradiol, mitoxantrone and a free radical initiator, 2,2'-azobis-(2-amidinopropane). ABCA2 is expressed in a variety of tissues, with greatest abundance in the central nervous system and macrophages. This transporter, along with other proteins that have a high degree of homology to ABCA2, including ABCA1 and ABCA7, are up-regulated in human macrophages during cholesterol import. Recent studies have shown ABCA2 also plays a role in the trafficking of low-density lipoprotein (LDL)-derived free cholesterol and to be coordinately expressed with sterol-responsive genes. A single nucleotide polymorphism in exon 14 of the ABCA2 gene was shown to be linked to early onset Alzheimer disease (AD) in humans, supporting an earlier study showing ABCA2 expression influences levels of APP and beta-amyloid peptide, the primary component of senile plaques. Studies thus far implicate ABCA2 as a sterol transporter, the deregulation of which may affect a cellular phenotype conducive to the pathogenesis of a variety of human diseases including AD, atherosclerosis and cancer.
a b s t r a c tObjective: The ABCA2 transporter shares high structural homology to ABCA1, which is crucial for the removal of excess cholesterol from macrophages and, by extension, in atherosclerosis. It has been suggested that ABCA2 sequesters cholesterol inside the lysosomes, however, little is known of the macrophage-specific role of ABCA2 in regulating lipid homeostasis in vivo and in modulating susceptibility to atherosclerosis. Methods: Chimeras with dysfunctional macrophage ABCA2 were generated by transplantation of bone marrow from ABCA2 knockout (KO) mice into irradiated LDL receptor (LDLr) KO mice. Results: Interestingly, lack of ABCA2 in macrophages resulted in a diminished lesion size in the aortic root (À24.5%) and descending thoracic aorta (À36.6%) associated with a 3-fold increase in apoptotic cells, as measured by both caspase 3 and TUNEL. Upon oxidized LDL exposure, macrophages from wildtype (WT) transplanted animals developed filipin-positive droplets in lysosomal-like compartments, corresponding to free cholesterol (FC) accumulation. In contrast, ABCA2-deficient macrophages displayed an abnormal diffuse distribution of FC over peripheral regions. The accumulation of neutral sterols in lipid droplets was increased in ABCA2-deficient macrophages, but primarily in cytoplasmic clusters and not in lysosomes. Importantly, apoptosis of oxLDL loaded macrophages lacking ABCA2 was increased 2.7-fold, probably as a consequence of the broad cellular distribution of FC. Conclusions: Lack of functional ABCA2 generates abnormalities in intracellular lipid distribution/trafficking in macrophages consistent with its lysosomal sequestering role, leading to an increased susceptibility to apoptosis in response to oxidized lipids and reduced atherosclerotic lesion development.
ATP-binding cassette (ABC) transporters are a family of proteins that translocate molecules across cellular membranes. Substrates can include lipids, cholesterol and drugs. Mutations in ABC transporter genes can cause human pathologies and drug resistance phenotypes in cancer cells. ABCA2, the second member the A sub-family to be identified, was found at high levels in ovarian carcinoma cells resistant to the anti-cancer agent, estramustine (EM). In vitro models with elevated levels of ABCA2 are resistant to a variety of compounds, including estradiol, mitoxantrone and a free radical initiator, 2,2'-azobis-(2-amidinopropane) (AAPH). ABCA2 is most abundant in the central nervous system (CNS), ovary and macrophages. Enhanced expression of ABCA2 and related proteins, including ABCA1, ABCA4 and ABCA7, is found in human macrophages upon bolus cholesterol treatment. ABCA2 also plays a role in the trafficking of low-density lipoprotein (LDL)-derived free cholesterol and is coordinately expressed with genes involved in cholesterol homeostasis. Additionally, ABCA2 expression has been linked with gene cluster patterns consistent with pathologies including Alzheimer's disease (AD). A single-nucleotide polymorphism (SNP) in exon 14 of the ABCA2 gene was shown to be linked to early onset AD in humans, supporting the observation that ABCA2 expression influences levels of beta-amyloid peptide (Abeta), the primary component of senile plaques. ABCA2 may play a role in cholesterol transport and affect a cellular phenotype conducive to the pathogenesis of a variety of human diseases including AD, atherosclerosis and cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.