Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism.
Reduced glutathione (GSH) is the most prevalent non-protein thiol in animal cells. Its de novo and salvage synthesis serves to maintain a reduced cellular environment and the tripeptide is a co-factor for many cytoplasmic enzymes and may also act as an important post-translational modification in a number of cellular proteins. The cysteine thiol acts as a nucleophile in reactions with both exogenous and endogenous electrophilic species. As a consequence, reactive oxygen species (ROS) are frequently targeted by GSH in both spontaneous and catalytic reactions. Since ROS have defined roles in cell signaling events as well as in human disease pathologies, an imbalance in expression of GSH and associated enzymes has been implicated in a variety of circumstances. Cause and effect links between GSH metabolism and diseases such as cancer, neurodegenerative diseases, cystic fibrosis (CF), HIV, and aging have been shown. Polymorphic expression of enzymes involved in GSH homeostasis influences susceptibility and progression of these conditions. This review provides an overview of the biological importance of GSH at the level of the cell and organism.
Studies of low basal Jun N-terminal kinase (JNK) activity in non-stressed cells led us to identify a JNK inhibitor that was purified and identified as glutathione S-transferase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.