A novel Advanced Cryogenic Carbon Capture (A3C) process is being developed due to its potential to achieve high CO 2 capture efficiencies using low cost but high intensity heat transfer to deliver a much reduced energy consumption and process equipment size and cost. These characteristics, along with the absence of process chemicals, offer the potential for application across a range of sectors. This work presents a techno-economic evaluation for applications ranging from 3% to 35% CO 2 content.
The provision of a secure, continuous energy supply is becoming an issue for all sectors of society and the food processing industry as a major energy user must address these issues. This paper identifies anaerobic digestion as an opportunity to go some way to achieving energy security in a sustainable manner. However, a number of energy management and waste reduction concepts must also be brought into play if the environmental, social and economic aspects of sustainability are to be balanced. The reporting of such activity will help to promote the green credentials of the industry. Cleaner production, supply chain and life cycle assessment approaches all have a part to play as tools supporting a new vision for integrated energy and waste management. Our reliance on high-energy processing, such as canning and freezing/chill storage, might also need re-assessment together with processing based on hurdle technology. Finally, the concepts of energy and power management for a distributed energy generation system must be brought into the food processing industry.
This paper describes the current situation of the chemical manufacturing industry, with special reference to Europe and looks to the future sustainability demands on the sector, and the implications of these demands for chemical engineering education. These implications include definitions of sustainability criteria for the sector and the need for transparent reporting under the Triple Bottom Line approach. The response of the education system to the sustainability agenda over the years and a number of strategies to incorporate it into courses are described. The important role of chemical (or more generally, process) engineers in delivering sustainable solutions is emphasised but this also suggests that a new way of thinking about the discipline is required. Indeed, this paper argues that the demand for a sustainable chemical manufacturing sector could bring about the next paradigm shift in the discipline which has been predicted for some time.2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.