Most direct volume renderings produced today employ one-dimensional transfer functions which assign color and opacity to the volume based solely on the single scalar quantity which comprises the data set. Though they have not received widespread attention, multidimensional transfer functions are a very effective way to extract materials and their boundaries for both scalar and multivariate data. However, identifying good transfer functions is difficult enough in one dimension, let alone two or three dimensions. This paper demonstrates an important class of three-dimensional transfer functions for scalar data, and describes the application of multidimensional transfer functions to multivariate data. We present a set of direct manipulation widgets that make specifying such transfer functions intuitive and convenient. We also describe how to use modern graphics hardware to both interactively render with multidimensional transfer functions and to provide interactive shadows for volumes. The transfer functions, widgets, and hardware combine to form a powerful system for interactive volume exploration.
Direct volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volumetric data and materials. For many volumes, homogeneous regions pose problems for typical gradient-based surface shading. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects that incorporates volumetric shadows, an approximation to phase functions, an approximation to forward scattering, and chromatic attenuation that provides the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for both real and synthetic volumetric data.
Abstract-Deformable isosurfaces, implemented with level-set methods, have demonstrated a great potential in visualization and computer graphics for applications such as segmentation, surface processing, and physically-based modeling. Their usefulness has been limited, however, by their high computational cost and reliance on significant parameter tuning. This paper presents a solution to these challenges by describing graphics processor (GPU) based algorithms for solving and visualizing level-set solutions at interactive rates. The proposed solution is based on a new, streaming implementation of the narrow-band algorithm. The new algorithm packs the level-set isosurface data into 2D texture memory via a multi-dimensional virtual memory system. As the level-set moves, this texture-based representation is dynamically updated via a novel GPU-to-CPU message passing scheme. By integrating the level-set solver with a real-time volume renderer, a user can visualize and intuitively steer the level-set surface as it evolves. We demonstrate the capabilities of this technology for interactive volume segmentation and visualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.