Collagen and gelatin have been widely used in the food, pharmaceutical, and cosmetic industries due to their excellent biocompatibility, easy biodegradability, and weak antigenicity. Fish collagen and gelatin are of renewed interest, owing to the safety and religious concerns of their mammalian counterparts. The structure of collagen has been studied using various modern technologies, and interpretation of the raw data should be done with caution. The structure of collagen may vary with sources and seasons, which may affect its applications and optimal extraction conditions. Numerous studies have investigated the bioactivities and biological effects of collagen, gelatin, and their hydrolysis peptides, using both in vitro and in vivo assay models. In addition to their established nutritional value as a protein source, collagen and collagen-derived products may exert various potential biological activities on cells in the extracellular matrix through the corresponding food-derived peptides after ingestion, and this might justify their applications in dietary supplements and pharmaceutical preparations. Moreover, an increasing number of novel applications have been found for collagen and gelatin. Therefore, this review covers the current understanding of the structure, bioactivities, and biological effects of collagen, gelatin, and gelatin hydrolysates as well as their most recent applications.
The significance of marine creatures as a source of unique bioactive compounds is expanding. Marine organisms constitue nearly half of the wordwide biodiversity; thus, oceans and sea present a vast resource for new substances and it is considered the largest remaining reservoir of beneficial natural molecules that maight be used as functional constituents in the food sector. This review is an update to the information about recent functional seafood compounds (proteins, peptides, amino acids, fatty acids, sterols, polysaccharides, oligosaccharides, phenolic compounds, photosynthetic pigments, vitamins, and minerals) focusing on their potential use and health benefits.
A colaborative study was conducted to develop a rapid, simple and reliable procedure for determining the solubility of food protein products, e.g., spray-dried whey protein concentrate, sodium caseinate, egg white protein and soy protein isolate. The procedure was developed by modifying the nitrogen solubility index (NSI) procedure. Protein content and soluble protein were determined by micro-Kjeldahl or biuret procedures with standard deviations of ? 0.83-4.12 for all proteins except caseinate which had a value of Y? 13.95. Although the biuret and micro-Kjeldahl procedures generally provided comparable accuracy and precision for protein content and solubility of certain proteins, the biuret procedure exhibited considerable error and variability for other proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.