Interest in HME as a pharmaceutical process continues to grow and the potential of automation and reduction of capital investment and labor costs has earned this technique a necessary consideration as a drug delivery solution.
Objectives
The overall goal of this research was to produce a stable hot-melt extruded “Antifungal Denture Adhesive film” (ADA) system for the treatment of oral candidiasis.
Methods
The ADA systems with hydroxypropyl cellulose (HPC) and/or polyethylene oxide (PEO) containing clotrimazole (10%) or nystatin (10%) were extruded utilizing a lab scale twin-screw hot-melt extruder. Rolls of the antifungal-containing films were collected and subsequently die-cut into shapes adapted for a maxillary (upper) and mandibular (lower) denture.
Results
DSC and PXRD results indicated that the crystallinity of both APIs was changed to amorphous phase after hot-melt extrusion. The ADA system, containing blends of HPC and PEO, enhanced the effectiveness of the antimicrobials a maximum of 5-fold toward the inhibition of cell adherence of C. albicans to mammalian cells/Vero cells. Remarkably, a combination of the two polymers without drug also demonstrated a 38% decrease in cell adhesion to the fungi due to the viscosity and the flexibility of the polymers. Drug-release profiles indicated that both drug concentrations were above the minimum inhibitory concentration (MIC) for C. albicans within 10 minutes and was maintained for over 10 hours. In addition, based on the IC50 and MIC values, it was observed that the antifungal activities of both drugs were increased significantly in the ADA systems.
Conclusions
Based on these findings, the ADA system may be used for primary, prophylaxis or adjunct treatment of oral or pharyngeal candidiasis via controlled-release of the antifungal agent from the polymer matrix.
The recrystallization of an amorphous drug in a solid dispersion system could lead to a loss in the drug solubility and bioavailability. The primary objective of the current research was to use an improved kinetic model to evaluate the recrystallization kinetics of amorphous structures and to further understand the factors influencing the physical stability of amorphous solid dispersions. Amorphous solid dispersions of fenofibrate with different molecular weights of hydroxypropylcellulose, HPC (Klucel™ LF, EF, ELF) were prepared utilizing hot-melt extrusion technology. Differential scanning calorimetry was utilized to quantitatively analyze the extent of recrystallization in the samples stored at different temperatures and relative humidity (RH) conditions. The experimental data were fitted into the improved kinetics model of a modified Avrami equation to calculate the recrystallization rate constants. Klucel LF, the largest molecular weight among the HPCs used, demonstrated the greatest inhibition of fenofibrate recrystallization. Additionally, the recrystallization rate (k) decreased with increasing polymer content, however exponentially increased with higher temperature. Also k increased linearly rather than exponentially over the range of RH studied.
Abstract. The objective of the present study was to investigate the effects of processing variables and formulation factors on the characteristics of hot-melt extrudates containing a copolymer (Kollidon® VA 64). Nifedipine was used as a model drug in all of the extrudates. Differential scanning calorimetry (DSC) was utilized on the physical mixtures and melts of varying drug-polymer concentrations to study their miscibility. The drug-polymer binary mixtures were studied for powder flow, drug release, and physical and chemical stabilities. The effects of moisture absorption on the content uniformity of the extrudates were also studied. Processing the materials at lower barrel temperatures (115-135°C) and higher screw speeds (50-100 rpm) exhibited higher post-processing drug content (~99-100%). DSC and X-ray diffraction studies confirmed that melt extrusion of drug-polymer mixtures led to the formation of solid dispersions. Interestingly, the extrusion process also enhanced the powder flow characteristics, which occurred irrespective of the drug load (up to 40% w/w). Moreover, the content uniformity of the extrudates, unlike the physical mixtures, was not sensitive to the amount of moisture absorbed. The extrusion conditions did not influence drug release from the extrudates; however, release was greatly affected by the drug loading. Additionally, the drug release from the physical mixture of nifedipineKollidon® VA 64 was significantly different when compared to the corresponding extrudates (f 2 =36.70). The extrudates exhibited both physical and chemical stabilities throughout the period of study. Overall, hot-melt extrusion technology in combination with Kollidon® VA 64 produced extrudates capable of higher drug loading, with enhanced flow characteristics, and excellent stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.