The continuous development of sport technologies constantly demands advancements in protective headgear to reduce the risk of head injuries. This article introduces new cellular helmet liner designs through two approaches. The first approach is the study of energy-absorbing biological materials. The second approach is the study of lattices comprised of force-diverting compliant mechanisms. On the one hand, bio-inspired liners are generated through the study of biological, hierarchical materials. An emphasis is given on structures in nature that serve similar concussion-reducing functions as a helmet liner. Inspiration is drawn from organic and skeletal structures. On the other hand, compliant mechanism lattice (CML)-based liners use topology optimization to synthesize rubber cellular unit cells with effective positive and negative Poisson's ratios. Three lattices are designed using different cellular unit cell arrangements, namely, all positive, all negative, and alternating effective Poisson's ratios. The proposed cellular (bio-inspired and CML-based) liners are embedded between two polycarbonate shells, thereby, replacing the traditional expanded polypropylene foam liner used in standard sport helmets. The cellular liners are analyzed through a series of 2D extruded ballistic impact simulations to determine the best performing liner topology and its corresponding rubber hardness. The cellular design with the best performance is compared against an expanded polypropylene foam liner in a 3D simulation to appraise its protection capabilities and verify that the 2D extruded design simulations scale to an effective 3D design.
Multiscale topology optimization (MSTO) is a numerical design approach to optimally distribute material within coupled design domains at multiple length scales. Due to the substantial computational cost of performing topology optimization at multiple scales, MSTO methods often feature subroutines such as homogenization of parameterized unit cells and inverse homogenization of periodic microstructures. Parameterized unit cells are of great practical use, but limit the design to a pre-selected cell shape. On the other hand, inverse homogenization provide a physical representation of an optimal periodic microstructure at every discrete location, but do not necessarily embody a manufacturable structure. To address these limitations, this paper introduces a Gaussian process regression model-assisted MSTO method that features the optimal distribution of material at the macroscale and topology optimization of a manufacturable microscale structure. In the proposed approach, a macroscale optimization problem is solved using a gradient-based optimizer The design variables are defined as the homogenized stiffness tensors of the microscale topologies. As such, analytical sensitivity is not possible so the sensitivity coefficients are approximated using finite differences after each microscale topology is optimized. The computational cost of optimizing each microstructure is dramatically reduced by using Gaussian process regression models to approximate the homogenized stiffness tensor. The capability of the proposed MSTO method is demonstrated with two three-dimensional numerical examples. The correlation of the Gaussian process regression models are presented along with the final multiscale topologies for the two examples: a cantilever beam and a 3-point bending beam.
The integration of STEM with the Arts, commonly referred to as STEAM, recognizes the need for human skill, creativity, and imagination in technological innovations and solutions of realworld technical problems. The STEAM paradigm changes the dominant "chalk and talk" lecture and "closed-ended" problem-solving orientation of traditional engineering pedagogy to a handson, studio-based, and open-ended creative learning approach, typical in art education. A growing body of literature has provided evidence of the favorable impact of situating STEAM in K-16 education. The long-term objective of this work is to promote creativity in engineering students by integrating learning methods and environments from the Arts into graduate STEM education. To this end, an integrating engineering, technology and art (ETA) educational model is developed and is currently being tested. This ETA educational model systematically merges technical instruction with studio-based pedagogy. The ETA model consists of three courses, which were piloted in the year 2017. In each course, engineering and art instructors and students collaborated for 15 weeks on design projects. These projects ranged from drones to architectural installations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.