Theories of in-stream turbines are adapted to analyse the potential electricity generation and impact of turbine arrays deployed in Minas Passage, Bay of Fundy. Linear momentum actuator disc theory (LMADT) is combined with a theory that calculates the flux through the passage to determine both the turbine power and the impact of rows of turbine fences. For realistically small blockage ratios, the theory predicts that extracting 2000-2500 MW of turbine power will result in a reduction in the flow of less than 5 per cent. The theory also suggests that there is little reason to tune the turbines if the blockage ratio remains small. A turbine array model is derived that extends LMADT by using the velocity field from a numerical simulation of the flow through Minas Passage and modelling the turbine wakes. The model calculates the resulting speed of the flow through and around a turbine array, allowing for the sequential positioning of turbines in regions of strongest flow. The model estimates that over 2000 MW of power is possible with only a 2.5 per cent reduction in the flow. If turbines are restricted to depths less than 50 m, the potential power generation is reduced substantially, down to 300 MW. For large turbine arrays, the blockage ratios remain small and the turbines can produce maximum power with a drag coefficient equal to the Betz-limit value.
The Vectron is a new pulse-coherent Doppler sonar system that has been developed to allow remote measurement of turbulent velocities at mid-water depth (O 10 m distant from the instrument transducers) to meet the measurement and monitoring needs of the in-stream tidal generating industry. Multiple sonar units (based on the Nortek AD2CP hardware platform) are networked together and the instrument is configured with a modular philosophy that allows a great deal of flexibility in acoustic sampling schemes. Time synchronization between the essentially independent instruments is achieved through a low latency Ethernet switch using a master Precision Time Protocol (PTP) clock. Pulse-to-pulse coherent sampling is achieved by taking advantage of bistatic beam geometries that isolate a small sample interval (at 7 m from the central transducer). Velocity ambiguity is overcome using a completely new technique based on multiple computations of the pulse-topulse correlations. A prototype system was deployed from a wharf in Parrsboro (Nova Scotia) where turbulent flows with mean velocities up to about 2 m/s were observed. Velocity power spectra are presented and compared to reference observations from a nearby single-point flowmeter.
Understanding the spatiotemporal distributions of migratory marine species at marine renewable energy sites is a crucial step towards assessing the potential impacts of tidal stream turbines and related infrastructure upon these species. However, the dynamic marine conditions that make tidal channels attractive for marine renewable power development also make it difficult to identify and follow species of marine fishes with existing technologies such as hydroacoustics and optical cameras. Acoustic telemetry can resolve some of these problems. Acoustic tags provide unique individual ID codes at an ultrasonic frequency, which are then detected and recorded by acoustic receivers deployed in the area of interest. By matching detection locations of fish species with environmental conditions at proposed sites for tidal energy infrastructure, species distribution models can be developed to predict the probability of species occurrence at sites of current and planned tidal power development. This information can be used to develop statistically robust encounter rate models to aid in quantifying the risk of tidal power development to migratory fish species. We used this approach to develop a predictive model of striped bass (Morone saxatilis) distribution within Minas Passage in the upper Bay of Fundy, Nova Scotia. Model results suggested increased probability of striped bass presence in Minas Passage during late ebb tide conditions and at relatively high water temperatures. We demonstrate the potential utility of species distribution modeling of acoustic tag detections in predicting interactions with renewable energy infrastructure, and show the importance of physical oceanographic variables influencing species distributions in a highly dynamic marine environment.
As tidal current and marine hydro-kinetic energy converters start to be deployed in pre-commercial arrays, it is critical that the design conditions are properly characterised. Turbulence is known to influence fatigue loads and power production, so developers use turbulence models to generate unsteady flows in order to simulate device performance. Most such models construct a synthetic flow field using a combination of measured parameters and theoretical assumptions. The majority in use today are based on atmospheric flow conditions and may have limited applicability in tidal environments. In the present work, we compare key turbulence model assumptions (which are recommended by the tidal turbine standards and are used in design software) to turbulence measurements from two tidal test sites in Scotland and Canada. Here, we show that the two sites have different levels of conformity to theoretical models, with significant variability within nearby locations at the same site. The agreement with spectral models is shown to be depth-dependent. The vertical component spectrum is better represented by the Kaimal model, while the streamwise spectrum is better represented by the von Kármán model. With the exception of one site, the shear profiles follow a power law, although with a different exponent to that commonly assumed. Both sites show significant deviations from the theoretical length scales and isotropy ratios. Such deviations are likely to misrepresent the loads experienced by a device. These results highlight the turbulence characteristics at real deployment sites, which are not well represented by current models, and, hence, which must be determined using field measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.