Pancreatic ductal adenocarcinoma (PDAC) evolves a complex microenvironment comprised of multiple cell types, including pancreatic stellate cells (PSC). Previous studies have demonstrated that stromal supply of alanine, lipids, and nucleotides supports the metabolism, growth, and therapeutic resistance of PDAC. Here we demonstrate that alanine crosstalk between PSCs and PDAC is orchestrated by the utilization of specifi c transporters. PSCs utilize SLC1A4 and other transporters to rapidly exchange and maintain environmental alanine concentrations. Moreover, PDAC cells upregulate SLC38A2 to supply their increased alanine demand. Cells lacking SLC38A2 fail to concentrate intracellular alanine and undergo a profound metabolic crisis resulting in markedly impaired tumor growth. Our results demonstrate that stromal-cancer metabolic niches can form through differential transporter expression, creating unique therapeutic opportunities to target metabolic demands of cancer. SIGnIFICAnCE: This work identifi es critical neutral amino acid transporters involved in channeling alanine between pancreatic stellate and PDAC cells. Targeting PDAC-specifi c alanine uptake results in a metabolic crisis impairing metabolism, proliferation, and tumor growth. PDAC cells specifi cally activate and require SLC38A2 to fuel their alanine demands that may be exploited therapeutically.
MicroRNA-21 is overexpressed in most cancers and has been implicated in tumorigenesis. Accumulating evidence supports a central role for the miR-21 guide strand (miR-21-5p) in ovarian cancer initiation, progression, and chemoresistance. However, there is limited information regarding the biological role of the miR-21 passenger strand (miR-21-3p) in ovarian cancer cells. The aim of this study was to investigate the role of miR-21-3p and its target genes in cisplatin-resistant ovarian cancer cells. Expression profiling of miR-21-5p and miR-21-3p was performed in a panel of cancer cells by qPCR. Colony formation and invasion assays were carried out on ovarian and prostate cancer cells transfected with miR-21-5p and miR-21-3p inhibitors. Dual luciferase reporter assays were used to identify the miR-21-3p target genes in ovarian cancer cells. Our results show that miR-21-5p had higher expression levels compared to miR-21-3p on a panel of cancer cells. Moreover, inhibition of miR-21-5p or miR-21-3p resulted in a significant decrease in ovarian and prostate cancer cell proliferation and invasion. Luciferase reporter assays identify RNA Binding Protein with Multiple Splicing (RBPMS), Regulator of Chromosome Condensation and POZ Domain Containing Protein 1 (RCBTB1), and Zinc Finger protein 608 (ZNF608) as miR-21-3p target genes. SiRNA-induced RBPMS silencing reduced the sensitivity of ovarian cancer cells to cisplatin treatment. Immunohistochemical analyses of serous ovarian cancer patient samples suggest a significant decrease of RBMPS levels when compared to normal ovarian epithelium. Taken together, the data generated in this study suggests a functional role for miR-21-3p in ovarian cancer and other solid tumors.
SUMMARY Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive fibrosis and hypovascularization, resulting in significant intratumoral hypoxia (low oxygen) that contributes to its aggressiveness, therapeutic resistance, and high mortality. Despite oxygen being a fundamental requirement for many cellular and metabolic processes, and the severity of hypoxia in PDAC, the impact of oxygen deprivation on PDAC biology is poorly understood. Investigating how PDAC cells survive in the near absence of oxygen, we find that PDAC cell lines grow robustly in oxygen tensions down to 0.1%, maintaining mitochondrial morphology, membrane potential, and the oxidative metabolic activity required for the synthesis of key metabolites for proliferation. Disrupting electron transfer efficiency by targeting mitochondrial respiratory supercomplex assembly specifically affects hypoxic PDAC proliferation, metabolism, and in vivo tumor growth. Collectively, our results identify a mechanism that enables PDAC cells to thrive in severe, oxygen-limited microenvironments.
The combination of chemotherapy and photodynamic therapy has emerged as a promising strategy for cancer therapy due to its synergistic effects. In this work, PEGylated silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) were tested as a platform to deliver a chemotherapy drug and a photosensitizer, simultaneously, in chemo-photodynamic therapy against HeLa and DU145 cancer cells in vitro. Ag-GQDs have displayed high efficiency in delivering doxorubicin as a model chemotherapy drug to both cancer cells. The Ag-GQDs exhibited a strong antitumor activity by inducing apoptosis in cancer cells without affecting the viability of normal cells. Moreover, the Ag-GQDs exhibited a cytotoxic effect due to the generation of the reactive singlet oxygen upon 425 nm irradiation, indicating their applicability in photodynamic therapy. In comparison with chemo or photodynamic treatment alone, the combined treatment of Ag-GQDs conjugated with doxorubicin under irradiation with a 425 nm lamp significantly increased the death in DU145 and HeLa. This study suggests Ag-GQDs as a multifunctional and efficient therapeutic system for chemo-photodynamic modalities in cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.