The CAMP reaction was first described by Christie et al. (R. Christie, N. E. Atkins, and E. Munch-Petersen, Aust. J. Exp. Biol. 22:197-200, 1944) as the synergistic lysis of sheep red blood cells by Staphylococcus aureus sphingomyelinase and CAMP factor (cohemolysin), a secreted protein from group B streptococci. We observed a CAMP-like reaction when Bartonella henselae was grown in close proximity to S. aureus on 5% sheep blood agar. This study describes the cloning, sequencing, and characterization of a CAMP-like factor autotransporter gene (cfa) from B. henselae. A cosmid library of B. henselae ATCC 49793 was constructed using SuperCos1 in Escherichia coli XL1-Blue MR. Cosmids were screened for the CAMP reaction, and a quantitative cohemolysis microtiter assay was developed using purified sphingomyelinase. Cosmid clones with the strongest cohemolytic reaction had similar restriction enzyme patterns. A DNA fragment that expressed the cohemolysin determinant was subcloned in a 7,200-bp StuI-BamHI fragment which contained a 6,024-bp open reading frame. The deduced amino acid sequence showed homology to the family of autotransporters. The autotransporters are a group of proteins that mediate their own export through the outer membrane. They contain an N-terminal passenger region, the ␣-domain, and a C-terminal transporter region, the -domain. The ␣-domain contained four, nearly identical 42-amino-acid repeats and showed homology to the family of RTX (repeat in toxin) hemolysins. The concentrated supernatant of the recombinant strain expressed a protein with a molecular mass of 180 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis consistent with the calculated molecular weight of the secreted ␣-domain. In conclusion, we have characterized a novel secreted cohemolysin autotransporter protein of B. henselae.
IPEX combined with straightforward histologic and radiologic criteria and imaging surveillance constitutes acceptable management of image-detected HRL, including ADH.
In an effort to inhibit the response to vascular injury that leads to intimal hyperplasia, this study investigated the in vivo efficacy of intraluminal delivery of thrombospondin-2 (TSP-2) small interfering RNA (siRNA). Common carotid artery (CCA) balloon angioplasty injury was performed in rats. Immediately after denudation, CCA was transfected intraluminally (15 min) with one of the following: polyethylenimine (PEI)+TSP-2 siRNA, saline, PEI only, or PEI+control siRNA. CCA was analyzed at 24 h or 21 d by using quantitative real-time PCR and immunohistochemistry. TSP-2 gene and protein expression were significantly up-regulated after endothelial denudation at 24 h and 21 d compared with contralateral untreated, nondenuded CCA. Treatment with PEI+TSP-2 siRNA significantly suppressed TSP-2 gene expression (3.1-fold) at 24 h and TSP-2 protein expression, cell proliferation, and collagen deposition up to 21 d. These changes could be attributed to changes in TGF-β and matrix metalloproteinase-9, the downstream effectors of TSP-2. TSP-2 knockdown induced anti-inflammatory M2 macrophage polarization at 21 d; however, it did not significantly affect intima/media ratios. In summary, these data demonstrate effective siRNA transfection of the injured arterial wall and provide a clinically effective and translationally applicable therapeutic strategy that involves nonviral siRNA delivery to ameliorate the response to vascular injury.-Bodewes, T. C. F., Johnson, J. M., Auster, M., Huynh, C., Muralidharan, S., Contreras, M., LoGerfo, F. W., Pradhan-Nabzdyk, L. Intraluminal delivery of thrombospondin-2 small interfering RNA inhibits the vascular response to injury in a rat carotid balloon angioplasty model.
BackgroundRNA interference (RNAi) is a powerful platform utilized to target transcription of specific genes and downregulate the protein product. To achieve effective silencing, RNAi is usually applied to cells or tissue with a transfection reagent to enhance entry into cells. A commonly used control is the same transfection reagent plus a “noncoding RNAi”. However, this does not control for the genomic response to the transfection reagent alone or in combination with the noncoding RNAi. These control effects while not directly targeting the gene in question may influence expression of other genes that in turn alter expression of the target. The current study was prompted by our work focused on prevention of vascular bypass graft failure and our experience with gene silencing in human aortic smooth muscle cells (HAoSMCs) where we suspected that off target effects through this mechanism might be substantial. We have used Next Generation Sequencing (NGS) technology and bioinformatics analysis to examine the genomic response of HAoSMCs to the transfection reagent alone (polyethyleneimine (PEI)) or in combination with commercially obtained control small interfering RNA (siRNAs) (Dharmacon and Invitrogen).ResultsCompared to untreated cells, global gene expression of HAoSMcs after transfection either with PEI or in combination with control siRNAs displayed significant alterations in gene transcriptome after 24 h. HAoSMCs transfected by PEI alone revealed alterations of 213 genes mainly involved in inflammatory and immune responses. HAoSMCs transfected by PEI complexed with siRNA from either Dharmacon or Invitrogen showed substantial gene variation of 113 and 85 genes respectively. Transfection of cells with only PEI or with PEI and control siRNAs resulted in identification of 20 set of overlapping altered genes. Further, systems biology analysis revealed key master regulators in cells transfected with control siRNAs including the cytokine, Interleukin (IL)-1, transcription factor GATA Binding Protein (GATA)-4 and the methylation enzyme, Enhancer of zeste homolog 2 (EZH-2) a cytokine with an apical role in initiating the inflammatory response.ConclusionsSignificant off-target effects in HAoSMCs transfected with PEI alone or in combination with control siRNAs may lead to misleading conclusions concerning the effectiveness of a targeted siRNA strategy. The lack of structural information about transfection reagents and “non coding” siRNA is a hindrance in the development of siRNA based therapeutics.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-2267-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.