Post workout multi-ingredient admixtures are commonly used to maximize recovery after exercise. The present double-blind, cross-over study compared the acute effects of ingesting a protein-vegan multi-ingredient (VGMT) vs. maltodextrin (MALT) on indices of muscle function. Ten trained males, (26.8±1.9 years) performed two identical, 3-day resistance training periods (one workout-session per day) while receiving either VGMT or MALT (10 minutes after the completion of each workout). Following a baseline evaluation,we conducted assessments at, 1-h, 24-h and 48-h after the 3-day training period. Primary outcome included the evoked tensiomyography contraction velocity (Vc) of vastus medialis (VM), biceps femoris long head (BFLH) and anterior deltoids (AD). Secondary outcomes involved strength and power performance while the other tensiomyography variables [muscle displacement (Dm), contraction time (Tc)] were considered as exploratory. After 1-h, all the tensiomyography variables measured at VM and BFLH were similarly depressed in both treatments. Only MALT showed a significantly lower Vc (-0.02 m . s -1 , 95% CI, -0.04, -0.01) in the AD. After 24-h, the VGMT treatment normalized all tensiomyography values. Conversely, impaired scores were observed in Vc for the VM (-0.03 m . s -1 , 95% CI, -0.06, -0.01) and BFLH (-0.02 m . s -1 , 95% CI, -0.05, 0.01) in the MALT treatment. Particularly, the Vc in VM was lower (p=0.043) in MALT compared to VGMT.Overall, both treatments required 48-h to regain their performance capacity; however, VGMT produced better vertical jump and squat performance at 24-h vs. MALT. Compared to MALT, a vegan-protein multi-ingredient appears to hasten the recovery of muscular function over a 24-h period.
Preworkout multi-ingredient admixtures are used to maximise exercise performance. The present double-blind, cross-over study compared the acute effects of ingesting a preworkout multi-ingredient (PREW) admixture vs. carbohydrate (CHO) over a week (microcycle) comprising three resistance training (RT) workouts alternated with two 30-min low-intensity endurance sessions (END) on RT volume (kg lifted) and END substrate oxidation. Additionally, postworkout decreases of muscle function and subjective responses were analysed. Following a baseline assessment, fourteen recreationally trained, middle-aged adults (seven females, 48.8 ± 4.7 years old) completed two identical microcycles separated by a two-week washout period while receiving either PREW or CHO (15 min prior to workout). The RT volume, per session (SVOL) and for the entire week (WVOL), was calculated. Fatty acid oxidation (FAO) during 30-min cycling corresponding to their individually determined maximal fat oxidation was measured using expired gasses and indirect calorimetry. Assessments of performance and tensiomyography were conducted within 20 min after each RT. Higher (p = 0.001) SVOL and WVOL along with a larger proportion of FAO (p = 0.05) during the second END workout were determined under the PREW treatment. No other statistically significant differences were observed between conditions. Compared to CHO, a preworkout multi-ingredient appears to increase resistance volume and favour fat oxidation during low-intensity endurance exercises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.