The elastic properties of many tissues such as the lung, dermis, and large blood vessels are due to the presence of elastic fibers in the extracellular space. These fibers have been shown by biochemical and ultrastructural analysis to be composed of two distinct components, a more abundant amorphous component and a 10-12 nm microfibrillar component, which is located primarily around the periphery of the amorphous component. The protein elastin makes up the highly insoluble amorphous component and is responsible for the elastic properties. Elastin is found throughout the vertebrate kingdom and possesses an unusual chemical composition rich in glycine, proline, and hydrophobic amino acids, consonant with its characteristic physical properties. The 72-kDa biosynthetic precursor, tropoelastin, is secreted into the extracellular space where it becomes highly cross-linked into a rubber-like network through the activity of the copper-requiring enzyme lysyl oxidase. Analysis of the elastin gene has demonstrated that hydrophobic and cross-linking domains are encoded in separate exons and that there is significant alternative splicing, resulting in multiple isoforms of tropoelastin. The elastin gene promoter contains many potential binding sites for various modulating factors indicative of a complex pattern of transcriptional regulation. The microfibrils contain several proteins, including fibrillin, and probably act as an organizing scaffold in the formation of the elastin network. There appears to be a fibrillin gene family in which each protein contains multiple repeats of a motif previously found in epidermal growth factor and a second motif observed in transforming growth factor beta 1-binding protein. Mutations in the fibrillin gene located on human chromosome 15 have been strongly implicated as the cause of the Marfan syndrome.
It has been previously shown that transforming growth factor beta (TGF beta) is capable of stimulating fibroblast collagen and fibronectin biosynthesis. The purpose of this study was to examine the mechanisms involved in TGF beta stimulation of fibroblast biosynthetic activity. Our results indicate that TGF beta causes a marked enhancement of the production of types I and III collagens and fibronectin by cultured normal human dermal fibroblasts. The rate of collagen production by fibroblasts exposed to TGF beta was 2-3-fold greater than that of control cells. These effects were associated with a 2-3-fold increase in the steady-state amounts of types I and III collagen mRNAs and a 5-8-fold increase in the amounts of fibronectin mRNAs as determined by dot-blot hybridization with specific cloned cDNA probes. In addition, the increased production of collagen and fibronectin and the increased amounts of their corresponding mRNAs remained elevated for at least 72 h after removal of TGF beta. These findings suggest that TGF beta may play a major role in the normal regulation of extracellular matrix production in vivo and may contribute to the development of pathological states of fibrosis.
Actinobacillus actinomycetemcomitans leukotoxin and
Keloids, fibroproliferative dermal tumors with effusive accumulation of extracellular matrix (ECM) components, particularly collagen, result from excessive expression of growth factors and cytokines. The etiology of keloids is unknown but they occur after dermal injury in genetically susceptible individuals, and they cause both physical and psychological distress for the affected individuals. Several treatment methods for keloids exist, including the combination therapy of surgical incision followed by intralesional steroid therapy, however, they have high recurrence rate regardless of the current treatment method. Improved understanding of the pathomechanisms leading to keloid formation will hopefully identify pathways that serve as specific targets to improve therapy for this devastating, currently intractable, disorder.
Poly(A)+ RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into XgtlO. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (it) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (Wil) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.