Background
The 1980 classification criteria for systemic sclerosis (SSc) lack sensitivity in early SSc and limited cutaneous SSc. A joint ACR-EULAR committee was established to develop new classification criteria for SSc.
Methods
Using consensus methods, 23 candidate items were arranged in a multi-criteria additive point system with a threshold to classify cases as SSc. The classification system was reduced by clustering items, and simplifying weights. The system was tested by: a) determining specificity and sensitivity in SSc cases and controls with scleroderma-like disorders; b) validating against the combined view of a group of experts on a set of cases with or without SSc.
Results
Skin thickening of the fingers extending proximal to the MCPs is sufficient to be classified as SSc, if that is not present, seven additive items apply with varying weights for each: skin thickening of the fingers, finger tip lesions, telangiectasia, abnormal nailfold capillaries, interstitial lung disease or pulmonary arterial hypertension, Raynaud's phenomenon, and SSc-related autoantibodies. Sensitivity and specificity in the validation sample were 0.91 and 0.92 for the new classification criteria and 0.75 and 0.72 for the 1980 ARA classification criteria. All selected cases were classified in accordance with consensus-based expert opinion. All cases classified as SSc by the 1980 ARA criteria were classified with the new criteria, and several additional cases were now considered to be SSc.
Conclusion
The ACR-EULAR classification criteria for SSc performed better than the 1980 ARA Criteria for SSc and should allow for more patients to be classified correctly as SSc.
The OARSI cartilage OA histopathology grading system appears consistent and simple to apply. Further studies are required to confirm the system's utility.
The family of nuclear factor-kappaB (NF-kappaB) transcription factors is intimately involved in the regulation of expression of numerous genes in the setting of the inflammatory response. Since inflammatory processes play a fundamental role in the damage of articular tissues, many in vitro and in vivo studies have examined the contribution of components of the NF-kappaB signaling pathways to the pathogenesis of various rheumatic diseases, in particular, of osteoarthritis (OA) and rheumatoid arthritis (RA). Inflammation, cartilage degradation, cell proliferation, angiogenesis and pannus formation are processes in which the role of NF-kappaB is prominent. Consequently, large efforts have been devoted to the study of the pharmacologic modulation of the NF-kappaB pathways. These studies have employed currently available therapeutic agents including non-steroidal anti-inflammatory drugs, corticosteroids, nutraceuticals and disease-modifying anti-rheumatic drugs, as well as novel small molecule inhibitors targeted to specific proteins of the NF-kappaB pathways. In addition, promising strategies such as improved antisense DNA therapy and RNA interference have been examined with encouraging results. However, since NF-kappaB also plays a crucial beneficial role in normal physiology and technical problems for effective gene therapy still remain, further research will be needed before NF-kappaB-aimed strategies become an effective therapy for joint diseases, such as OA and RA.
The accumulation of a large number of myofibroblasts is responsible for exaggerated and uncontrolled production of extracellular matrix during the development and progression of pathological fibrosis. Myofibroblasts in fibrotic tissues are derived from at least three sources: expansion and activation of resident tissue fibroblasts, transition of epithelial cells into mesenchymal cells (epithelial-mesenchymal transition, EMT), and tissue migration of bone marrow-derived circulating fibrocytes. Recently, endothelial to mesenchymal transition (EndoMT), a newly recognized type of cellular transdifferentiation, has emerged as another possible source of tissue myofibroblasts. EndoMT is a complex biological process in which endothelial cells lose their specific markers and acquire a mesenchymal or myofibroblastic phenotype and express mesenchymal cell products such as α smooth muscle actin (α-SMA) and type I collagen. Similar to EMT, EndoMT can be induced by transforming growth factor (TGF-β). Recent studies using cell-lineage analysis have demonstrated that EndoMT may be an important mechanism in the pathogenesis of pulmonary, cardiac, and kidney fibrosis, and may represent a novel therapeutic target for fibrotic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.