The accumulation of a large number of myofibroblasts is responsible for exaggerated and uncontrolled production of extracellular matrix during the development and progression of pathological fibrosis. Myofibroblasts in fibrotic tissues are derived from at least three sources: expansion and activation of resident tissue fibroblasts, transition of epithelial cells into mesenchymal cells (epithelial-mesenchymal transition, EMT), and tissue migration of bone marrow-derived circulating fibrocytes. Recently, endothelial to mesenchymal transition (EndoMT), a newly recognized type of cellular transdifferentiation, has emerged as another possible source of tissue myofibroblasts. EndoMT is a complex biological process in which endothelial cells lose their specific markers and acquire a mesenchymal or myofibroblastic phenotype and express mesenchymal cell products such as α smooth muscle actin (α-SMA) and type I collagen. Similar to EMT, EndoMT can be induced by transforming growth factor (TGF-β). Recent studies using cell-lineage analysis have demonstrated that EndoMT may be an important mechanism in the pathogenesis of pulmonary, cardiac, and kidney fibrosis, and may represent a novel therapeutic target for fibrotic disorders.
Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.
NFD is a severe and usually progressive systemic fibrotic disease affecting the dermis, subcutaneous fascia, and striated muscles. It also appears that the disease can cause fibrosis of lungs, myocardium, and other organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.