The OARSI cartilage OA histopathology grading system appears consistent and simple to apply. Further studies are required to confirm the system's utility.
The ACLT variant of the surgical instability model in rabbits is a reproducible and effective model of OA. The cartilage lesions in this model and their response to therapy can be graded according to an adapted histological and histochemical grading system, though also this system is to some extent subjective and, thus, neither objective nor entirely reproducible.
Fresh osteochondral allograft transplantation has been an effective treatment option with promising long-term clinical outcomes for focal posttraumatic defects in the knee for young, active individuals. We examined histologic features of 35 fresh osteochondral allograft specimens retrieved at the time of subsequent graft revision, osteotomy, or TKA. Graft survival time ranged from 1 to 25 years based on their time to reoperation. Histologic features of early graft failures were lack of chondrocyte viability and loss of matrix cationic staining. Histologic features of late graft failures were fracture through the graft, active and incomplete remodeling of the graft bone by the host bone, and resorption of the graft tissue by synovial inflammatory activity at graft edges. Histologic features associated with long-term allograft survival included viable chondrocytes, functional preservation of matrix, and complete replacement of the graft bone with the host bone. Given chondrocyte viability, long-term allograft survival depends on graft stability by rigid fixation of host bone to graft bone. With the stable osseous graft base, the hyaline cartilage portion of the allograft can survive and function for 25 years or more.
Microcrystals of calcium pyrophosphate dihydrate (CPPD) and monosodium urate (MSU) deposited in synovium and articular cartilage initiate joint inflammation and cartilage degradation in large part by binding and directly activating resident cells. TLRs trigger innate host defense responses to infectious pathogens, and the expression of certain TLRs by synovial fibroblasts has revealed the potential for innate immune responses to be triggered by mesenchymally derived resident cells in the joint. In this study we tested the hypothesis that chondrocytes also express TLRs and that one or more TLRs centrally mediate chondrocyte responsiveness to CPPD and MSU crystals in vitro. We detected TLR2 expression in normal articular chondrocytes and up-regulation of TLR2 in osteoarthritic cartilage chondrocytes in situ. We demonstrated that transient transfection of TLR2 signaling-negative regulator Toll-interacting protein or treatment with TLR2-blocking Ab suppressed CPPD and MSU crystal-induced chondrocyte release of NO, an inflammatory mediator that promotes cartilage degeneration. Conversely, gain-of-function of TLR2 in normal chondrocytes via transfection was associated with increased CPPD and MSU crystal-induced NO release. Canonical TLR signaling by parallel pathways involving MyD88, IL-1R-associated kinase 1, TNF receptor-associated factor 6, and IκB kinase and Rac1, PI3K, and Akt critically mediated NO release in chondrocytes stimulated by both CPPD and MSU crystals. We conclude that CPPD and MSU crystals critically use TLR2-mediated signaling in chondrocytes to trigger NO generation. Our results indicate the potential for innate immunity at the level of the articular chondrocyte to directly contribute to inflammatory and degenerative tissue reactions associated with both gout and pseudogout.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.