The historic event of the Late Antique Little Ice Age (LALIA) was recently identified in dozens of natural and geological climate proxies of the northern hemisphere. Although this climatic downturn was proposed as a major cause for pandemic and extensive societal upheavals in the sixth–seventh centuries CE, archaeological evidence for the magnitude of societal response to this event is sparse. This study uses ancient trash mounds as a type of proxy for identifying societal crisis in the urban domain, and employs multidisciplinary investigations to establish the terminal date of organized trash collection and high-level municipal functioning on a city-wide scale. Survey, excavation, sediment analysis, and geographic information system assessment of mound volume were conducted on a series of mounds surrounding the Byzantine urban settlement of Elusa in the Negev Desert. These reveal the massive collection and dumping of domestic and construction waste over time on the city edges. Carbon dating of charred seeds and charcoal fragments combined with ceramic analysis establish the end date of orchestrated trash removal near the mid-sixth century, coinciding closely with the beginning of the LALIA event and outbreak of the Justinian Plague in the year 541. This evidence for societal decline during the sixth century ties with other arguments for urban dysfunction across the Byzantine Levant at this time. We demonstrate the utility of trash mounds as sensitive proxies of social response and unravel the time–space dynamics of urban collapse, suggesting diminished resilience to rapid climate change in the frontier Negev region of the empire.
"Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history" (2013 Overall, the mineralogical data suggest that the dunes are derived dominantly from the Nile Delta, with Sinai wadi sands being a minor contributor. Geochemical data that proxy for both the light mineral fraction (SiO 2 /10eAl 2 O 3 þ Na 2 O þ K 2 OeCaO) and heavy mineral fraction (Fe 2 O 3 eMgOeTiO 2 ) also indicate a dominant Nile Delta source for the dunes. Thus, we report here the first empirical evidence that the SinaieNegev dunes are derived dominantly from the Nile Delta. Linkage of the SinaieNegev erg to the Nile Delta as a source is consistent with the distribution of OSL ages of Negev dunes in recent studies. Stratigraphic studies show that during the Last Glacial period, when dune incursions in the SinaieNegev erg began, what is now the Nile Delta area was characterized by a broad, sandy, minimally vegetated plain, with seasonally dry anastomosing channels. Such conditions were ideal for providing a ready source of sand for aeolian transport under what were probably much stronger glacial-age winds.With the post-glacial rise in sea level, the Nile River began to aggrade. Post-glacial sedimentation has been dominated by fine-grained silts and clays. Thus, sea level, along with favorable climatic conditions, emerges as a major influence on the timing of dune activity in the SinaieNegev erg, through its control on the supply of sand from the Nile Delta. The mineralogy of the SinaieNegev dunes is also consistent with a proposed hypothesis that these sediments are an important source of loess in Israel.Published by Elsevier Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.