Target of rapamycin (TOR) promotes reinitiation at upstream ORFs (uORFs) in genes that play important roles in stem cell regulation and organogenesis in plants. Here, we report that the small GTPase ROP2, if activated by the phytohormone auxin, promotes activation of TOR, and thus translation reinitiation of uORF-containing mRNAs. Plants with high levels of active ROP2, including those expressing constitutively active ROP2 (CA-ROP2), contain high levels of active TOR ROP2 physically interacts with and, when GTP-bound, activates TOR TOR activation in response to auxin is abolished in ROP-deficient plants. GFP-TOR can associate with endosome-like structures in ROP2-overexpressing plants, indicating that endosomes mediate ROP2 effects on TOR activation. CA-ROP2 is efficient in loading uORF-containing mRNAs onto polysomes and stimulates translation in protoplasts, and both processes are sensitive to TOR inhibitor AZD-8055. TOR inactivation abolishes ROP2 regulation of translation reinitiation, but not its effects on cytoskeleton or intracellular trafficking. These findings imply a mode of translation control whereby, as an upstream effector of TOR, ROP2 coordinates TOR function in translation reinitiation pathways in response to auxin.
To date, mutations in two genes, SPATA16 and DPY19L2, have been identified as responsible for a severe teratozoospermia, namely globozoospermia. The two initial descriptions of the DPY19L2 deletion lead to a very different rate of occurrence of this mutation among globospermic patients. In order to better estimate the contribution of DPY19L2 in globozoospermia, we screened a larger cohort including 64 globozoospermic patients. Twenty of the new patients were homozygous for the DPY19L2 deletion, and 7 were compound heterozygous for both this deletion and a point mutation. We also identified four additional mutated patients. The final mutation load in our cohort is 66.7% (36 out of 54). Out of 36 mutated patients, 69.4% are homozygous deleted, 19.4% heterozygous composite and 11.1% showed a homozygous point mutation. The mechanism underlying the deletion is a non-allelic homologous recombination (NAHR) between the flanking low-copy repeats. Here, we characterized a total of nine breakpoints for the DPY19L2 NAHR-driven deletion that clustered in two recombination hotspots, both containing direct repeat elements (AluSq2 in hotspot 1, THE1B in hotspot 2). Globozoospermia can be considered as a new genomic disorder. This study confirms that DPY19L2 is the major gene responsible for globozoospermia and enlarges the spectrum of possible mutations in the gene. This is a major finding and should contribute to the development of an efficient molecular diagnosis strategy for globozoospermia.
Reinitiation supporting protein, RISP, interacts with 60S (60S ribosomal subunit) and eIF3 (eukaryotic initiation factor 3) in plants. TOR (target-of-rapamycin) mediates RISP phosphorylation at residue Ser267, favoring its binding to eL24 (60S ribosomal protein L24). In a viral context, RISP, when phosphorylated, binds the CaMV transactivator/ viroplasmin, TAV, to assist in an exceptional mechanism of reinitiation after long ORF translation. Moreover, we show here that RISP interacts with eIF2 via eIF2β and TOR downstream target 40S ribosomal protein eS6. A RISP phosphorylation knockout, RISP-S267A, binds preferentially eIF2β, and both form a ternary complex with eIF3a in vitro. Accordingly, transient overexpression in plant protoplasts of RISP-S267A, but not a RISP phosphorylation mimic, RISP-S267D, favors translation initiation. In contrast, RISP-S267D preferentially binds eS6, and, when bound to the C-terminus of eS6, can capture 60S in a highly specific manner in vitro, suggesting that it mediates 60S loading during reinitiation. Indeed, eS6-deficient plants are highly resistant to CaMV due to their reduced reinitiation capacity. Strikingly, an eS6 phosphomimic, when stably expressed in eS6-deficient plants, can fully restore the reinitiation deficiency of these plants in cellular and viral contexts. These results suggest that RISP function in translation (re)initiation is regulated by phosphorylation at Ser267.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.